Mostrando artículos por etiqueta: volcán - Instituto Geofísico - EPN

Posterior a ocurrir dos sismos, registro de horas de tremor alto

La actividad interna en el volcán se mantiene en niveles moderados con intensificaciones momentáneas, no se han presentado eventos de tipo VT durante los últimos días, los LP’s han aumentado ligeramente, mientras que las explosiones y el tremor de emisión se mantienen casi constantes en estos 3 días (Figura 1).

Informe Especial Tungurahua N. 5 - 2016

Figura 1. Conteo de eventos tipo VT, LP, Explosiones y Tremor de emisión del volcán Tungurahua desde el 01 de Febrero 2016 al día de hoy.

 

Continúan observándose en las noches incandescencia en el cráter con descenso de bloques (Figura 2), éstos han alcanzado los 1500 metros bajo el cráter.

Las explosiones están caracterizadas por bramidos, cañonazos, vibración del suelo y ventanas. Las emisiones con carga moderada a alta de ceniza han alcanzado una altura máxima de 5000 metros sobre el nivel del cráter el día de hoy.

Informe Especial Tungurahua N. 5 - 2016

Figura 2. Expulsión de bloques incandescentes hasta 500 metros bajo la cumbre durante la tarde-noche del 2 de marzo 2016. Foto tomada desde el OVT por E. Gaunt.

 

Esta mañana hemos registrado 2 explosiones importantes a las 04h01 (TL) y 04h40 (TL) (Figura 3), seguidas por dos episodios de tremor de emisión. El primero desde las 05h30 - 07h30 y el segundo desde las 08h30 hasta las 14h30 aproximadamente (Figura 4).

Informe Especial Tungurahua N. 5 - 2016

Figura 3. Localización y sismograma de las explosiones de esta madrugada a las 04h01 (TL) y 04h40 (TL). Estas se localizaron a 2 y 3 Km bajo la cumbre respectivamente.

 

Informe Especial Tungurahua N. 5 - 2016

Figura 4. Sismograma de la estación BMAS. Se observan las 2 explosiones de las 04h01 y 04h40 y los episodios de tremor.

 

A las 10h20 (TL) se produjo el descenso de flujos piroclásticos por las quebradas Romero y Achupashal (Figura 5); el más extenso alcanzó 1.5 Km bajo la cumbre sobre la quebrada Romero, éste flujo se produjo porque una emisión de tamaño moderado de 3.3 km de altura hizo que descienda el material que se había acumulado en el cráter y sus bordes.

Informe Especial Tungurahua N. 5 - 2016

Figura 5. Descenso del flujo piroclástico, quebrada Achupashal.

 

Informe Especial Tungurahua N. 5 - 2016

Figura 6. Imagen térmica tomada desde OVT, donde se observa el alcance de los flujos piroclásticos de esta mañana.

 

Los niveles de la amplitud del tremor medidos por el RSAM mostraron durante el día de hoy un ascenso en sus valores (Figura 7), alcanzando similares niveles de energía liberada que durante el 26 de Febrero cuando empezó su reactivación.

Informe Especial Tungurahua N. 5 - 2016

Figura 7. Arriba: Rsam de la estación RETU. Se observa que el día de hoy alcanzó valores similares que los del 26 de Febrero 2016. Abajo: Rsam de la estación ARA2 con datos desde el 25 de Febrero 2016 hasta el momento.

 

Los datos de tres estaciones inclinométricas muestran un ascenso en el eje tangencial durante los últimos 3-4 días (Figura 8), esto significa que posiblemente hay un incremento de la presión desde el flanco SW del volcán.   

Informe Especial Tungurahua N. 5 - 2016

Fig. 8. Deformación en la estación RETU. Se observa un ascenso en la tendencia del eje tangencial.

 

Las componentes verticales de las estaciones GPS de RETU, MAZO y VZCY muestran un movimiento vertical hacia arriba, asociado con una inflación por el ascenso de material en el edificio del volcán (Figura 9),  este cambio de tendencia se lo ve muy fuertemente en la estación de Mazón (flanco SW del volcán) desde el inicio del 28 de Febrero.  Las estaciones de BILB y CHON no muestran un cambio en esta componente.   

Informe Especial Tungurahua N. 5 - 2016

Figura 9. Datos de GPS que muestran una inflación durante los últimos días.

 

Interpretación:
Hasta el día de hoy los niveles de energía generados por el volcán han sido decrecientes.  Las dos explosiones de 4h01 y 04h40 tuvo el efecto de destapar un tapón interno y liberar la energía que había acumulado, como se ve en la Figura 7, con el incremento muy notable en los valores de la amplitud sísmica (RSAM), cuando después de 8 días de actividad lo normal sería tener menores niveles de energía y menos explosiones.  Por otro lado, se observa una inflación de casi 3 cm en el componente vertical de un GPS (MAZO) en el flanco SW.  Igualmente se observan en tres inclinómetros de los flancos NW una tendencia inflacionaria en los ejes tangencial.  Estos patrones, igual como el incremento del componente vertical de la estación Mazon, sugiere que hay una intrusión de magma nuevo.  Esto podría explicar el repunte de actividad que hemos registrado el día de hoy, además esto podría provocar una intensificación aún más de la actividad en términos de energía liberada. Mientras no se observen cambios más significativos, los escenarios para las próximas semanas siguen siendo los detallados a continuación:

  • Escenario 1, más probable. La actividad en el volcán continúa con explosiones, emisiones y caídas de ceniza, que en algunos momentos podrían ser más intensas, como ahora. Adicionalmente se pueden presentar flujos piroclásticos pequeños, con un alcance limitado hasta la parte media de los flancos del volcán, similares a los ocurridos el día de ayer. Estos eventos pueden presentarse durante las próximas 2 a 3 semanas.
  • Escenario 2, menos probable. Que ocurra una migración de nuevo magma hacia la superficie con un volumen importante y que provoque una erupción paroxística similar a agosto 2006.
    En el caso de que ocurran cambios significativos en los parámetros de monitoreo, el Instituto Geofísico actualizará los escenarios que se han propuesto.

El personal del Instituto Geofísico se mantiene trabajando las 24 horas al día tanto en el Observatorio Vulcanológico del Tungurahua (OVT) y en el Centro TERRAS (Centro de procesamiento, información y alerta temprana volcánica y sísmica).


GP, PM, PJ, BB, MR, AA
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Volcanes

Como parte del monitoreo que se desarrolla por parte de los técnicos de turno en el OVT, el día Miércoles 2 de marzo del 2016 durante la tarde y noche, las buenas condiciones climáticas permitieron realizar toma de fotografías de la actividad estromboliana que mantiene el volcán Tungurahua.

Monitoreo de la actividad superficial del volcán Tungurahua

Fotos 1 a 4. Fotografías del volcán Tungurahua tomadas desde OVT el dia miércoles 02 de marzo del 2016 (E. Gaunt-OVTIGEPN)

En las fotografías se observa el descenso de material incandescente por los flancos del volcán, así como la emisión continua de una pluma de gases con carga moderada de ceniza que se eleva pocos kilómetros sobre el cráter en dirección occidental.

Se debe tomar en cuenta que estas fotografías son tomadas con larga exposición y parámetros especiales. El monitoreo es realizado de manera permanente y continua por parte de los técnicos del IG en el observatorio.

PE/EG/MA/ET/GPM
Instituto Geofìsico
Escuela Politècnica Nacional

Publicado en Volcanes

Actividad superficial moderada con presencia de pequeños flujos piroclásticos

01 de marzo del 2016 (16h30TL)

Desde el último informe especial publicado el sábado 27 de febrero se observa que el número de episodios de tremor de emisión ha aumentado así como las explosiones y eventos relacionados al movimiento de fluidos en el interior del volcán (LP) (Figura 1).

Informe Especial Tungurahua N. 4 - 2016

Figura 1. Conteo de eventos tipo VT, LP, Explosiones y tremor de emisión desde febrero hasta el 1 de marzo del 2016.

Desde su reactivación del viernes 26 de febrero se reportó durante las noches incandescencia a nivel del cráter, rodamiento de bloques, bramidos, vibraciones del suelo y ventanas, cañonazos, así como pequeñas fuentes de lava.
 
El tremor sísmico registrado en la estación RETU (la más cercana al cráter) muestra aún una energía importante como se observa en la figura 2. Sin embargo, el tamaño de las explosiones registradas desde el 27 de febrero (Figura 3) se han mantenido entre pequeñas a moderadas.  

Informe Especial Tungurahua N. 4 - 2016

Figura 2. RSAM correspondiente al tremor sísmico registrado en la estación RETU. Relación que permite establecer un equivalente con energía liberada por el volcán.

Informe Especial Tungurahua N. 4 - 2016

Figura 3. Amplitudes de infrasonido del volcán Tungurahua.

El tremor se presenta en franjas de diferente intensidad (Figura 4), y está asociado a emisiones continuas, con carga baja-moderada de ceniza. La columna de emisión más alta, observada desde el sábado hasta el día de hoy alcanzó los 4000 metros sobre el nivel del cráter. Durante esta emisión también se reportó vibración del suelo y ventanales además de ruidos tipo turbina y bramidos, registrados en algunas poblaciones del flanco occidental del volcán.

Informe Especial Tungurahua N. 4 - 2016

Figura 4. Sismograma de la estación Retu. Se observa eventos tipo chugging el 27 de febrero, el 29 se presentó un tremor de emisión continuo que duró más de 12 horas.

Durante la noche de ayer se produjo una actividad tipo fuente de lava, donde el material, en su mayor parte, se quedó dentro del cráter. Estuvo acompañada de bramidos de diferente intensidad con bloques balísticos que alcanzaron los 1500 metros bajo la cumbre. Después de algunas horas se produjo un pequeño flujo piroclástico que descendió  por las quebradas Juive, Mandur y Achupashal.

Luego se registró una explosión que produjo el descenso de un nuevo flujo piroclástico por la quebrada Romero. Estos flujos piroclásticos se quedaron en la parte alta y media de los flancos del volcán, en zonas deshabitadas. El más extenso fue el que descendió por la quebrada Achupashal y alcanzó los 1500 metros bajo la cumbre (Figura 5).

Informe Especial Tungurahua N. 4 - 2016

Figura 5. Depósito de flujos piroclásticos en la parte alta del cono.

Las poblaciones con mayor afectación por caída de ceniza son: Choglontus, Cotaló, El Manzano y Palitahua, otras comunidades con menor afectación son: Bilbao y Pillate, así como algunas parroquias rurales del cantón Quero.

Con respecto a las emisiones de dióxido de azufre el flujo máximo fue de 1544 T/día registrado en la estación de Bayushig el 27 de febrero con  47 medidas válidas. En la figura 6 se presentan estos datos. Como referencia, el valor mínimo en estas últimas semanas fue de 209 T/d registrado en la estación de Huayrapata, el 25 de febrero con 8 medidas válidas.  

Informe Especial Tungurahua N. 4 - 2016

Figura 6. Flujo de dióxido de azufre acumulado desde el año 2015 para el volcán Tungurahua.

No hay cambios relevantes en las emisiones de gas, ni tampoco en la deformación, lo que indicaría que la actividad actual está relacionada con una intrusión magmática de volumen pequeño y por lo tanto los escenarios para las próximas semanas, propuestos el 27 de febrero, se mantienen:

  • Escenario 1, más probable. La actividad en el volcán continúa con explosiones, emisiones y caídas de ceniza, que en algunos momentos podrían  ser más intensas. Adicionalmente se pueden presentar flujos piroclásticos pequeños, con un alcance limitado hasta la parte media de los flancos del volcán, similares a los ocurridos el día de ayer. Estos eventos pueden presentarse durante las próximas 2 a 3 semanas.
  • Escenario 2, menos probable. Que ocurra una migración de nuevo magma hacia la superficie con un volumen importante y que provoque una erupción paroxística similar a agosto 2006.

En el caso de que ocurran cambios significativos en los parámetros de monitoreo, el Instituto Geofísico actualizará los escenarios que se han propuesto.

El personal del Instituto Geofísico se mantiene trabajando las 24 horas al día tanto en el Observatorio Vulcanológico del Tungurahua (OVT) y en el Centro TERRAS (Centro de procesamiento, información y alerta temprana volcánica y sísmica).


GP, BB, AA
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Volcanes

ACTUALIZACIÓN DE LA ACTIVIDAD ERUPTIVA Y ESCENARIOS VOLCÁN TUNGURAHUA

27 de febrero del 2016 (12h15TL)

Luego de la reactivación en el mes de noviembre del año pasado, el volcán en estos últimos tres meses ha mostrado una actividad baja, con un promedio de 10 sismos por día en los últimos meses (Fig. 1).

El día de ayer 26 de febrero, alrededor de las 11h05 (TL), se comenzó a registrar un pequeño enjambre de sismos, compuesto por eventos de fractura (VT) y de movimiento de fluidos (LP). Estos eventos se localizaron en la parte superior del conducto volcánico. Esta información fue reportada oportunamente por radio y teléfono a la Secretaria de Gestión de Riesgos y a los vigías de la zona y luego las autoridades locales.

A las 12h11 (TL) se produjo una primera explosión de tamaño pequeño, pero que generó una columna de ceniza que alcanzó los 5 km de altura sobre la cumbre. Esta explosión estuvo seguida de numerosos eventos sísmicos, tremor y nuevas explosiones a las 12h39, 12h47 y 12h52. Estas explosiones fueron las más importantes y generaron columnas de emisión de hasta 7 km de altura. A las 13h33 una nueva explosión provocó una columna de emisión de 8 km, con presencia de flujos piroclásticos pequeños que descendieron hasta la mitad del cono, sin llegar a las zonas habitadas.

Informe Especial Tungurahua N. 3 - 2016

Fig. 1  Sismograma de la estación Retu.  Se observa la baja actividad hasta las 11h05 de ayer, seguido por un enjambre premonitor, el tremor generado por la emisión continua y la fase de explosiones y emisiones de ceniza.

 

Luego de esta actividad se presentó una emisión continua de ceniza y material de grano más grueso tipo gravilla. La parte más intensa de esta emisión tuvo una duración de 5 horas y estuvo acompañada por un tremor de alta amplitud. Esto generó una caída de ceniza que afectó a las poblaciones de El Manzano, Choglontus, Pillate, Tisaleo, Cotaló, Quero, Ambato y Riobamba. La caída de ceniza se mantiene aún en el lado occidental del volcán. El espesor de ceniza depositada en el sector de Choglontus, hasta las primeras horas de la mañana de hoy fue de alrededor de 2 mm.

A las 15h35 (TL) ocurrió un nuevo flujo piroclástico que descendió por la parte alta de las quebradas Mandur, Hacienda y Cusúa. Este flujo avanzó también hasta la mitad del volcán y no fue provocado por ninguna explosión, sino por el fenómeno denominado “boiling over”, que corresponde a un derrame de una pequeña cantidad de magma y/o escombros del cráter, por el sector del borde occidental y nor-occidental del cráter.

Después de la 13h33 hasta el cierre de este boletín se han registrado 29 explosiones, entre pequeñas y moderadas, así como también tremor asociado a emisiones intermitentes de ceniza y gas.

En la noche fue posible observar actividad estromboliana, con bloques que descendieron hasta los 1500 m bajo la cumbre. Alrededor de las 22h00 por un periodo corto de tiempo se pudo observar una fuente de lava, que alcanzó 500 m de altura sobre la cumbre. En la figura 2 se muestran fotos de esta actividad.

Informe Especial Tungurahua N. 3 - 2016

Fig. 2: 2a Imagen de depósitos incandescentes producidos luego de una explosión, foto tomada desde el OVT cerca de las 19h00 (TL). 2 b. Actividad estromboliana observada a las 22h14 TL, los bloques descendieron aproximadamente 1500 m bajo la cumbre (Fuente OVT).

 

Esta actividad corresponde a una ruptura del tapón rocoso del conducto volcánico y que estaba bloqueando la salida de gases y magma.   Este evento se evidencia por la caída de gravilla de varios colores que se depositó en Choglontus y Pillate. El depósito de ceniza hasta ahora medido, representa un evento de caída intensa durante un corto periodo de tiempo.

La red de deformación que mide las variaciones que tienen los flancos del volcán, no muestra cambios significativos, particularmente en las estaciones ubicadas en la base del volcán, por lo tanto se considera que el volumen de magma que ascendió fue pequeño.
Adicionalmente los datos sísmicos hasta el momento no indican una alimentación nueva ni tampoco profunda que puedan sugerir la posibilidad una intrusión magmática de un volumen grande.

Dentro de este contexto, la actividad actual está relacionada con una intrusión magmática de volumen pequeño y por lo tanto los escenarios que se proponen para las próximas semanas son los siguientes:

  • Escenario 1, más probable. La actividad en el volcán continúa con explosiones, emisiones y caídas de ceniza, que en algunos momentos podrían  ser más intensas.  Adicionalmente se pueden presentar flujos piroclásticos pequeños, con un alcance limitado hasta la parte media de los flancos del volcán, similares a los ocurridos el día de ayer. Estos eventos pueden presentarse durante las próximas 2 a 3 semanas.
  • Escenario 2, menos probable. Que ocurra una migración de nuevo magma hacia la superficie con un volumen importante y que provoque una erupción paroxística similar a agosto 2006.

En el caso de que ocurran cambios significativos en los parámetros de monitoreo, el Instituto Geofísico actualizará los escenarios que se han propuesto.
El personal del Instituto Geofísico se mantiene trabajando las 24 horas al día tanto en el Observatorio Vulcanológico del Tungurahua (OVT) y en el Centro TERRAS (Centro de procesamiento, información y alerta temprana volcánica y sísmica).


AA, BB, PM, MR
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Volcanes

EXPLOSION EN EL VOLCÁN TUNGURAHUA

26 de febrero del 2016 (16h45)

A las 13h33 (TL) se produjo una nueva explosión, la misma que generó flujos piroclásticos pequeños, que llegaron hasta la mitad del volcán. Descendieron por el flanco occidental y nor occidental. Tal como se observa en la imagen tomada desde la cámara ubicada en el sector de Mandur (Fig. 1).

Informe Especial Tungurahua N. 2 - 2016

Fig. 1: Imagen tomada a las 15h10TL por la cámara térmica en Mandur, que muestran las huellas dejados por los flujos piroclásticos incandescentes, que llegaron hasta la mitad del cono en la parte Nor-occidental, específicamente las quebradas Mandur, Hacienda y Cusua.

 

Posteriormente a las 15h35 (TL) nuevamente se produjo un flujo piroclástico que descendió por la parte alta de las quebradas Mandur, Hacienda, Cusúa y probablemente Pirámide. Este nuevo flujo avanzó también hasta la mitad del volcán y no fue provocado por ninguna explosión, sino por el fenómeno denominado “boiling over”, que corresponde a un derrame de una pequeña cantidad de magma y/o escombros del cráter, por el sector del borde occidental-nor-occidental del cráter.
Con respecto a la actividad sísmica se mantiene un tremor continuo de alta amplitud.

En resumen se han producido 5 explosiones con los siguientes parámetros:

Fecha y hora (tiempo local) Presión en Pascales Comentarios
26-02-2016 12H11 30 Altura de columna 5 km sobre el nivel (snc) del cráter, aproximadamente (presencia de nubes en la parte alta)
26-02-2016 12H39 215 Altura aproximada snc 6 km
26-02-2016 12H47 90 Altura de columna aproximada snc 6 km
26-02-2016 12H52 270 Altura aproximada snc 6-7 km
26-02-2016 13H33 116 Generó flujos piroclásticos. Altura aproximada de columna snc 8 km

La ubicación de las explosiones y de los sismos volcano tectónicos y lps se muestra en la figura 2, los mismos que indican actividad superficial que se ubicó entre 5 y 2 km bajo el cráter.

Informe Especial Tungurahua N. 2 - 2016

Fig. 2 Localización de sismos volcano tectónicos, largo período y explosiones.

 

Después de las explosiones comenzó a caer ceniza en los sectores de El Manzano, Choglontus, Pillate, Juive y recientemente en Ambato y Quero.

La ceniza se caracterizó por ser fina, del tamaño de granos de azúcar. Sin embargo, en el sector de Pillate y Choglontus el tamaño de grano de la ceniza llegó hasta 3 mm y está formada por gravilla de fragmentos rocosos de color rojizo, negro, gris y beige. Figura 3.

Informe Especial Tungurahua N. 2 - 2016

Fig 3. Foto de muestra de gravilla. Cortesía Marco Montesdeoca (ECU911 Ambato).

 

Durante las explosiones se generaron bramidos, cañonazos y se escuchó desde Pillate y El Manzano el rodamiento de bloques. Hay que indicar que la mayor parte del tiempo el volcán permaneció parcialmente cubierto, por lo que no ha sido posible tener precisión en las alturas de las columnas de emisión.  Sin embargo,  desde una cámara de ECU911 en Ambatillo, se tomó una imagen de una columna de 5 km snc, llenando el cráter y compuesta de un alto contenido de ceniza. Figura 4.  

Informe Especial Tungurahua N. 2 - 2016

Fig. 4: Foto tomada desde una cámara del ECU911 en Ambatillo, correspondiente a la columna eruptiva asociada con la explosión de las 12h11TL.

 

Como se indicó al momento el volcán no ha bajado su nivel de actividad que se mantiene moderada, hay una columna de emisión continua que dirige al occidente con contenido de ceniza moderada.   
Es posible que se tenga nuevas explosiones en las próximas horas. Por esta razón sugerimos a la población de las áreas de influencia del volcán mantenerse alertas a los reportes que se estarán emitiendo regularmente desde al IGEPN.

AA, PM
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Volcanes

EXPLOSION EN EL VOLCÁN TUNGURAHUA

26 de febrero del 2016 (12h41)

Desde las 11h05 (TL) se registró un enjambre de eventos de tipo VT, acompañados de Lps, esto se observó en varias estaciones de la red del Tungurahua.

A las 12h12 (TL) se registró una explosión cuya columna de emisión alcanzó los 5 Km sobre el cráter con contenido alto de ceniza, al momento la columna tiene un ancho importante y tiene una dirección hacia el Oeste. Asociada a la explosión se escuchó un leve bramido. La emisión fue captada por las cámaras  del ecu 911 Ambato y Latacunga e IG.

El registro de infrasonido da un valor de 30 Pa correspondiente a una explosión pequeña y posiblemente de origen profundo.
Los vigías que se encuentran alrededor del volcán reportan caída de ceniza en Juive Chico, Chongluntus, El Manzano y Cahuají.

Al momento continúan los eventos relacionados con fracturamiento de roca (VT) y movimiento de fluidos (LP), por lo que el Instituto Geofísico se mantiene alerta.

Informe Especial Tungurahua N. 1 - 2016

Figura 1. Registro del enjambre de eventos VT, Lp y la explosión.

 

Informe Especial Tungurahua N. 1 - 2016

Figura 2. Se observa la emisión con carga moderada de ceniza. Tomada desde el OVT.

 

GP
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Volcanes

Gracias a la gestión de la SGR, Zona 3, el día sábado 20 de febrero se efectuó un sobrevuelo al volcán Chimborazo, con objeto de identificar la causa y posibles zonas potenciales de generación de flujos de lodo y escombros por deshielos, además se solicitó la participación de personal técnico del IG para que efectúe monitoreo del volcán con cámara térmica. El vuelo se efectuó en una nave Twin Otter de la FAE (452), se despegó del aeropuerto de la ciudad de Latacunga alrededor de las 09:10 y se mantuvo la ruta que se indica en la figura 1.

Equipo franco-ecuatoriano colocó un GPS en la cima del volcán Chimborazo

Figura 1: Ruta seguida (rojo) durante el sobrevuelo del 20 de febrero al volcán Chimborazo.

 

Durante la aproximación al volcán se verificó que el mismo se encontraba despejado parcialmente, ya que un techo de nubes por debajo de los 4300 msnm cubría la parte inferior del volcán e impedía ver el efecto de los flujos de lodo ocurridos anteriormente en el sector de Chuquipogyo (Fig. 2).

Equipo franco-ecuatoriano colocó un GPS en la cima del volcán Chimborazo

Figura 2: Vista del flanco W del volcán Chimborazo, las nubes bajo la cota 4300 msnm ocultan el sector de Chuquipogyo (Foto: P. Ramón IG/EPN).

 

Del análisis de las imágenes obtenidas con la cámara infrarroja por el personal del IG, se concluye que no se encontraron anomalías termales en los flancos superiores del volcán (Fig. 3) y que podrían indicar una posible actividad del volcán, por lo que se puede indicar que el fenómeno que está ocasionado la fusión de los glaciares no está relacionado con un incremento de la temperatura de la superficie del terreno por actividad volcánica.

Equipo franco-ecuatoriano colocó un GPS en la cima del volcán Chimborazo

Figura 3: Imagen térmica de los flancos superiores S y SE del volcán, no se observan anomalías termales (Imagen: P. Ramón IG/EPN).

 

De igual manera las imágenes térmicas efectuadas en el glaciar N° 13, a partir del cual, según los informes del INAMHI (Cáceres B., com. Personal) se produce un colapso de la  morrena frontal dando lugar a la evacuación repentina de agua acumulada al interior del glaciar, lo que a su vez produjo los deslizamientos y flujos que luego han afectado a las comunidades ubicadas aguas abajo, no muestran la presencia de anomalías termales que indicarían una actividad volcánica que podría producir el incremento de temperaturas en esa zona (Fig. 4).

Equipo franco-ecuatoriano colocó un GPS en la cima del volcán Chimborazo

Figura 4: Imagen térmica de la zona cercana al glaciar N°13. No se observan anomalías termales (Imagen: P. Ramón IG/EPN).

 

Hacia el final del vuelo, la parte del volcán sobre la llanura de inundación en la Q. Yambo Rumi se despejó parcialmente dejando ver el cauce excavado en la morrena glaciar por los deslizamientos y flujos ocurridos en días anteriores (Fig. 5). No se evidenció la presencia de flujos que estuvieran descendiendo al momento de la observación o de depósitos de flujos recientes.

Equipo franco-ecuatoriano colocó un GPS en la cima del volcán Chimborazo

Figura 5: Sobre la llanura de inundación en la Q. Yambo Rumi se observa el cauce excavado en la morrena glaciar por los deslizamientos y flujos ocurridos en días anteriores (Imagen: M. Almeida IG/EPN).

 

PR
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Volcanes

Aumento ocasional de columnas de vapor, deshielos diarios, formación de lahares secundarios y explosiones internas pequeñas

Resumen
Desde el último informe publicado el 29 de enero del presente año, la actividad superficial del volcán Cotopaxi ha sido mayormente baja.  Dicha actividad está caracterizada por una presencia de vapor de agua que se mantiene a nivel del cráter, esporádicas columnas de gases y emisiones con un contenido de ceniza muy bajo. Al momento, varios de los parámetros de monitoreo (SO2, sismos tipo LP, tremor, ceniza, deformación) han regresado a su nivel de base pre-eruptivo.  Sin embargo, la actividad sísmica del volcán aún registra eventos tipo VT's (~50/día) y en menor número explosiones internas (1-3/día). Este tipo de actividad indica posiblemente la permanencia de una fuente de presión dentro del volcán. De acuerdo a lo indicado, el escenario más probable en un lapso de días a semanas es que la actividad superficial del volcán se mantenga en un nivel bajo. En este escenario ocasionalmente se pueden presentar emisiones de ceniza, sin que estas lleguen a afectar a las poblaciones aledañas al volcán. Por otro lado, también pueden ocurrir lahares secundarios cuya afectación estaría dentro de los límites del Parque Nacional Cotopaxi, similar a los meses anteriores. Por último, no se descarta un incremento de la actividad interna y externa del volcán en las próximas semanas; no obstante, este escenario es el menos probable. Al final del presente informe se detallan todos los escenarios.


Observaciones visuales
La actividad superficial ha estado caracterizada principalmente por emisiones poco energéticas de gas a nivel del cráter, alcanzando en ocasiones hasta 600 m sobre el nivel del mismo (Fig. 1), como los que ocurrieron el 04 y 13 de febrero a las 07h37 y 7h43 TL (Tiempo Local) y se dirigieron hacia el NW.

Actualización de la Actividad Eruptiva del Volcán Cotopaxi - N° 4 - 2016

Figura 1. Emisión de gas alcanzando entre 100 a 600 msnc en los días 04 y 13 de febrero de 2016 a las 07h37 y 12h43TL, respectivamente (F. Vásconez, IGEPN).

 

Es posible que el aumento de lluvias en los flancos orientales del cono contribuya un incremento de agua al sistema hidrotermal superficial, facilitando así una mayor ocurrencia de fumarolas.  Los pluviómetros del IG - EPN que se encuentran en el flanco E- NE del Cotopaxi, han registrado un aumento considerable de precipitaciones en las últimas semanas (Fig. 2).   Dichos datos se correlacionan también con medidos en el INAMHI (Ing. Juan Carvajal, com. pers., feb., 2016).

Actualización de la Actividad Eruptiva del Volcán Cotopaxi - N° 4 - 2016

Figura 2. Registro de precipitaciones desde mediados de noviembre de 2015 hasta el 15 de febrero de 2016.  Se nota que entre el 06-15 de febrero de 2016 hubo un aumento considerable en las precipitaciones (M. Yépez, IGEPN).

 


Sismicidad
Durante las últimas semanas, la actividad sísmica del volcán Cotopaxi no ha mostrado mayores cambios respecto a las semanas anteriores. El volcán continúa presentando eventos Volcano-Tectónicos (VT) con un promedio de aproximadamente 60 VT/día (Fig. 3), además de pocas explosiones pequeñas y sismos híbridos. La mayoría de estos eventos tienen magnitudes entre 0.5 y 2.80Mlv (Fig. 4) y se localizaron bajo el cráter entre 1 y 13 km de profundidad (Fig. 5 y 6).

Actualización de la Actividad Eruptiva del Volcán Cotopaxi - N° 4 - 2016

Figura 3. Número de eventos Volcano-Tectónico, Explosiones e Híbridos en el Cotopaxi hasta el 15/02/2016 (G. Viracucha).

 

Actualización de la Actividad Eruptiva del Volcán Cotopaxi - N° 4 - 2016

Figura 4. Magnitud vs. Tiempo de los eventos localizados hasta el 15/02/2016 (G. Viracucha).

 

Actualización de la Actividad Eruptiva del Volcán Cotopaxi - N° 4 - 2016

Figura 5. Localizaciones de los eventos sísmicos y sus profundidades, hasta el 15/02/2016 (G. Viracucha).

 

Actualización de la Actividad Eruptiva del Volcán Cotopaxi - N° 4 - 2016

Figura 6. Localizaciones del evento VLP a las 18h01TU del 15 de febrero, 2016, con una profundidad de 5 km bajo el cráter y cuya señal acústica fue captado por varias estaciones de la red instrumental del Cotopaxi. La magnitud fue 2.81Mlv (M. Ruiz, IGEPN).

 


Deformación
Los resultados del GPS en CAME (Cerro Ami) muestran un patrón de deformación que fue notable hasta fines de noviembre de 2015. Desde abril hasta fines de noviembre de 2015 se observó una tendencia de movimiento acelerado hacía al occidente. Dicha tendencia también fue vista en otras estaciones GPS´ubicadas en este flanco. Posteriormente, debido al decaimiento de los esfuerzos internos se observa que la deformación ha regresado a un nivel cuasi estable en las primeras semanas de 2016.  

Actualización de la Actividad Eruptiva del Volcán Cotopaxi - N° 4 - 2016

Figura 7. Deformación registrada en la estación GPS  CAME (Cerro Ami), del eje E-W. (P. Jarrín, IGEPN).

 


Emisión del SO2
Las emisiones de SO2 se mantuvieron inferiores a 1000 ton/día en las últimas semanas (Fig. 8 y 9). Los valores obtenidos se encuentran casi al nivel de base pre-eruptivo.

Actualización de la Actividad Eruptiva del Volcán Cotopaxi - N° 4 - 2016

Figura 8. Valores máximos del SO2 (dióxido de azufre) hasta el 15 de febrero, 2016 (D. Sierra, IGEPN).

 

Actualización de la Actividad Eruptiva del Volcán Cotopaxi - N° 4 - 2016

Figura 9. Tabla con los valores máximos del SO2 (dióxido de azufre) hasta el 15 de febrero, 2016.  Mayormente se observe que los valores han quedado por debajo de los 1000 toneladas/día (D. Sierra, IGEPN).

 


Caída de ceniza
Desde el 23 de noviembre de 2015 no se registraron caídas de ceniza significativas asociadas a la actividad del volcán. Las pequeñas emisiones de enero probablemente no produjeron caídas de ceniza medibles en las proximidades del volcán.


Lahares
Desde el 28 de agosto de 2015 varios lahares secundarios se han producido en el volcán Cotopaxi. A diferencia de los lahares primarios que se originan por contacto del material volcánico incandescente con el hielo durante erupciones grandes, el origen de los lahares secundarios se debe a intensas lluvias que caen en la parte alta del volcán y arrastran pendiente abajo la ceniza que se depositó en los flancos durante la fase eruptiva que empezó el 14 de agosto de 2015. Esta mezcla inicial incorpora rocas y otro tipo de escombros al transportarse pendiente abajo, viajando hasta que la pendiente y su energía lo permitan. Algunos de estos lahares se han generado también debido a los deshielos que se han producido constantemente. El volumen esperado de los lahares secundarios producidos por las lluvias es mucho menor al esperado por las erupciones grandes del Cotopaxi.  A veces sus caudales picos medios han alcanzado entre 30 a 50 m3/s, pero generalmente el caudal ha sido menor y no sobrepasa 10 m3/s.    Hasta hoy se han registrado  58 lahares secundarios, la mayor parte de ellos han descendido por la quebrada Agualongo ubicada al occidente del volcán, y unos pocos por los flancos norte y nororiental.  En algunos días hay 3-4 episodios laháricos (Fig. 10).

Actualización de la Actividad Eruptiva del Volcán Cotopaxi - N° 4 - 2016

Figura 10: Muestra de los episodios laharicos que se registraron entre el 07 a 10 de febrero de 2016, durante lo cual hubo precipitaciones importantes en el volcán (G. Viracucha, IGEPN).

 

Se cree que la mayoría de los lahares actualmente se producen por deshielos focalizados en los flancos occidentales.  Particularmente, estos deshielos acentúan la generación de lahares en horas de la tarde, cuando la mayoría se presentan.  La cobertura glacial actual del Cotopaxi se encuentra muy fisurada y debilitada y por esto el deshielo está ocurriendo continuamente (Fig 11).  

Actualización de la Actividad Eruptiva del Volcán Cotopaxi - N° 4 - 2016

Figura 11: Foto tomado el 29 de enero, 2016 del flanco sur del Cotopaxi, con el relieve del Morurco a la izquierda.  Se nota las evidencias del deshielo en este sector del cono—por la escorrentía de agua al margen del glaciar.   (P. Mothes, IGEPN).

 


Interpretación
Los datos de monitoreo obtenidos hasta el 15 de enero de 2016 indican que ciertos parámetros del monitoreo (SO2, LP's, tremor, ceniza) regresaron casi hasta el nivel de base pre-eruptivo. Todos estos parámetros están vinculados de alguna manera a la salida de gas. La deformación del edificio marca una pausa desde noviembre 2015 y paulatinamente está regresado al nivel pre-eruptivo.  Sin embargo, a pesar que este parámetro está de menor apreciación, los sismos de tipo VT's detectados de manera sostenida desde el 10 de septiembre y las pequeñas explosiones registradas indicarían que sigue una fuente de presión al interior del volcán.

Una posible interpretación de este conjunto de resultados es que al momento la parte superior de la intrusión magmática se está transformando en un tapón poco permeable que no deja pasar los gases, los cuales se acumulan hasta producir una pequeña explosión interna, como hemos reportado acá. Los VT's podrían ser interpretados como pequeños movimientos de este tapón o pequeñas realimentaciones de magma cuyo volumen no altera el patrón de estabilidad que muestran los valores de deformación desde el fin de Noviembre. Al momento no hay evidencia de un cambio de comportamiento del Cotopaxi respecto a las últimas semanas pero no se puede descartar el inicio de un cambio de estos patrones de estabilidad actuales en plazos cortos. El IGEPN está muy atento de cualquier cambio en las condiciones presentadas por el volcán.


Escenarios
Al momento el volcán no presenta una actividad eruptiva significativa y en función de esto se propone tres escenarios organizados del más probable al menos probable:

  • 1) La actividad superficial se mantiene baja con muy infrecuentes emisiones de ceniza como la del 24 de enero de 2016 y luego por las emisiones de solo gases más notables, registrados el 13 de febrero. Lahares secundarios pequeños se pueden formar debido a la removilización del material eruptivo por lluvia o deshielo del glaciar afectando de manera leve únicamente la zona del Parque Nacional Cotopaxi como ya se ha evidenciado en los eventos entre el 7 a 10 de febrero de 2016. Este es el escenario más probable para las próximas semanas si no hay un inicio de cambios en los parámetros de monitoreo.
  • 2) Una explosión interna o un VT un poco más energético podrían producir fracturas en el tapón y producir una pequeña reactivación del volcán. En este caso se podrían reanudar las emisiones de ceniza acompañadas de posibles explosiones pequeñas a moderadas. Caídas de ceniza afectarían zonas cercanas al volcán en función de la velocidad y dirección del viento. Los depósitos de ceniza alcanzarían pocos milímetros de espesor. En este caso la nueva acumulación de material sobre el glaciar y los flancos del volcán podría aumentar el tamaño y la frecuencia de los lahares secundarios. Sin embargo, estos también afectarían principalmente el Parque Nacional Cotopaxi.
  • 3) Un nuevo pulso de magma llega al reservorio pero su paso a la superficie está obstruido por un tapón, lo que provoca un aumento de la presión en el conducto volcánico. Eventualmente, la presión del magma vence la resistencia del tapón, produciendo una (o más) explosiones de tamaño moderado a grande con abundante incandescencia, caídas de bombas balísticas que alcanzan un máximo de 5 km desde el cráter y pequeños flujos piroclásticos (tipo Tungurahua julio 2013). Las caídas de ceniza son moderadas a fuertes en las direcciones predominantes del viento con una acumulación de algunos milímetros hasta pocos centímetros de ceniza cerca del volcán. Adicionalmente, se pueden formar lahares por la mezcla del material volcánico con agua de derretimiento del glaciar. En este escenario los lahares podrían ser de tamaño pequeño hasta moderado y afectarían principalmente la zona del Parque Nacional Cotopaxi. También podrían bajar hasta zonas pobladas en los drenajes principales del volcán (ríos Pita, y/o Cutuchi y/o Alaquez y/o Jatunyacu), aunque sin mayor afectación. Al momento de la publicación de este informe este escenario es menos probable que 1) y 2) debido a la falta de evidencia de una nueva intrusión.
  • 4) no se descarta por completo una erupción de mayor magnitud asociado a una intrusión de mayor volumen que en el escenario 3). Al igual que el escenario 3), la falta de evidencia de una nueva intrusión de gran volumen hace que el escenario 4) sea el menos probable de todos. De todas maneras hay que recordar que los anteriores períodos eruptivos del Cotopaxi en los siglos anteriores se caracterizaron por durar muchos años y porque en dentro de este período de años se produjeron 1-2 erupciones mayores como la considerada en el escenario 4.

Estos escenarios podrán ser cambiados de acuerdo a la evolución de la actividad del volcán


PM-VV-PE-MR-GP
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Volcanes

El volcán Reventador, luego de un período de tranquilidad de 26 años,  experimentó una gran erupción (VEI=4) en noviembre de 2002, a partir de entonces se han sucedido períodos de una mayor actividad explosiva y efusiva en 2004-2005, 2006-2007, 2008-2010 y desde fines del año 2011 el volcán presenta una continua actividad caracterizada por la presencia de decenas a centenares de explosiones diarias de tamaños pequeños a moderados, en muchas ocasiones se ha observado que estas explosiones son acompañadas por la ocurrencia de flujos piroclásticos que han descendido por todos los flancos del cono activo y por otro lado la actividad ha estado caracterizada por la efusión de flujos de lava, hasta octubre de 2009 se emitieron 17 diferentes flujos de lava y hasta finales de 2014, se habían generado un total de por los menos 37 flujos de lava diferentes.

Desde mediados de diciembre del año anterior la actividad en general mostró una tendencia a disminuir ligeramente respecto al mes anterior, sin embargo desde inicios del nuevo año se muestra un incremento de la misma, mayormente en las manifestaciones superficiales (Fig. 1).

Actualización de la actividad eruptiva del volcán Reventador Informe 2016-1

Figura 1: Depósitos de flujos piroclásticos dejados en los flancos S y SE del cono, los días 5 de enero (arriba) y 19 de enero (abajo). Fotos tomadas por las cámaras instaladas en Copete y LAV4.

 

El sistema de detección de anomalías termales MIROVA reporta numerosas anomalías en el volcán durante el año 2015, la frecuencia de las mismas se incrementa en el mes de enero 2016 y también la intensidad de las mismas, registrándose hasta la fecha: 9 anomalías termales de intensidad baja, 21 anomalías de intensidad moderada y 3 de intensidad alta (Fig. 2).

Actualización de la actividad eruptiva del volcán Reventador Informe 2016-1

Figura 2: Detección de anomalías termales por el sistema MIROVA, durante el mes de enero (arriba) y el año de 2016 (abajo).

 

El monitoreo sísmico muestra la presencia sobretodo de explosiones pequeñas (Fig. 3), las mismas que generalmente están asociadas con columnas de emisión de no más de 1  km de altura, con bajos contenidos de ceniza y que generalmente se mueven hacia el NW (Fig. 4)

Actualización de la actividad eruptiva del volcán Reventador Informe 2016-1

Figura 3: Registro sísmico de la estación de LAV4 del 15  de enero 2016, se observa sobretodo señales de pequeñas explosiones.

 

Actualización de la actividad eruptiva del volcán Reventador Informe 2016-1

Figura 4: Izquierda: Emisión de una columna de vapor y gases con un contenido bajo a moderado de ceniza, en la tarde del día 15 de enero (Foto: J. Córdoba IG). Derecha: la cámara térmica recientemente instalada en el borde NE de la caldera muestra una imagen termal del depósito de un flujo piroclástico reciente.

 

El monitoreo satelital de SO2 (OMI, GOME, AIRS) no muestra concentraciones significativas de este gas, asociado a las emisiones del volcán Reventador desde el inicio del presente año.

El día 28 de enero personal de vulcanólogos del IG efectuó un sobrevuelo de monitoreo al Volcán Reventador, durante el mismo se observó que este se encontraba despejado y que presentaba actividad fumarólica pulsátil y además pequeñas explosiones, cuyas emisiones mostraban contenidos de ceniza bajos a moderados, las que se dirigieron hacia el occidente. Se pudo apreciar en casi todos los flancos del cono, los depósitos dejados por numerosos flujos piroclásticos dispersos en todos los flancos sin alcanzar distancias mayores de 1000 m y que se restringen únicamente al pie del cono actual. Al momento de la observación el volcán se encontraba emitiendo un flujo de lava desde un vento ubicado al norte y alineado en sentido N-S con el vento central; este nuevo flujo de lava desciende por el flanco norte del volcán y aún no alcanza la parte baja del cono actual (Fig. 5); durante este vuelo el vento central se caracterizó por generar pequeñas explosiones, al pie del cono se observó una gran cantidad de bloques balísticos producto de las explosiones más fuertes que se han producido recientemente. Además se pudo percibir fuerte olor a azufre producto de las emisiones de gas disperso en el ambiente.

Gracias a las condiciones climáticas adecuadas, durante este vuelo fue posible obtener imágenes térmicas de las principales anomalías térmicas. La mayor temperatura máxima aparente (TMA) corresponde al Vento Norte,  con un valor (TMA) de 501°C, y que es el sitio en el que se origina el flujo de lava descrito; en el Vento Central se midió un valor de temperatura (TMA) de 372,8ºC y sobre el flujo de lava norte se midió un valor (TMA) de 324,6°C; ver Figura 6.  No se registraron otras anomalías de importancia en el volcán.

Actualización de la actividad eruptiva del volcán Reventador Informe 2016-1

Figura 5: Foto del flanco suroccidental del volcán, se observa la emisión de gas sin contenido de ceniza además los ventos central y norte y el flujo de lava del flanco norte. (Foto: M. Almeida, IG/EPN).

 

Actualización de la actividad eruptiva del volcán Reventador Informe 2016-1

Figura 6: A la izquierda se muestra una Imagen térmica con valores anotados de temperatura TMA del volcán. A la derecha ase muestra un fotografía correspondiente, se aprecia  la débil emisión de gases que se dirigía al occidente  (Imagen: P. Ramón /Fotografía: M. Almeida, IG-EPN).

 

En resumen el volcán Reventador, al momento manifiesta una actividad de nivel alto y que se caracteriza por la ocurrencia de fenómenos explosivos y efusivos. Hay que indicar que los fenómenos eruptivos tienen un impacto únicamente dentro del anfiteatro del volcán, el mismo que no es poblado y por el que no atraviesan obras de infraestructura por lo que los flujos y las caídas de tefra no representan un peligro al momento. Sobre la continuación de a actividad de este volcán el IG continuará informando a la población y autoridades.

PR/IG
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Volcanes

La cumbre del  Volcán Chimborazo es el punto más alejado del centro de la Tierra, o dicho de otra manera es el punto de nuestro planeta más cercano al Sol; esto se explica ya que la forma de nuestro planeta no es perfectamente esférica, sino que esta es más ensanchada en la Línea Ecuatorial y achatada en los Polos.

El día viernes, 05 de Febrero, 2016 un equipo franco-ecuatoriano de científicos del Instituto Geofísico de la Escuela Politécnica Nacional (IGEPN), del Instituto de Investigación para el Desarrollo (IRD-Francia) y del Instituto Geográfico Militar (IGM) ascendieron hasta la cumbre del coloso con objeto de medir con una precisión centimétrica la distancia entre el centro de la Tierra y la cumbre del Chimborazo.  Los técnicos contaron con el aval de la Embajada de Francia y el Municipio de Riobamba y estuvieron respaldados por expertos andinistas ecuatorianos y del Ministerio de Defensa.  El evento fue realizado en conmemoración de la visita de la primera misión Geodésica Francesa al Ecuador en 1735, hace 280 años.

Equipo franco-ecuatoriano colocó un GPS en la cima del volcán Chimborazo

Foto 1: El equipo de técnicos franco-ecuatoriano en la cima del volcán Chimborazo.  (Fotografía cortesía de la Revista Ñan).

 

Los científicos arribaron a la cumbre del volcán en la mañana del pasado viernes 5 de febrero y permanecieron en ella por más de 2 horas efectuando mediciones con un instrumento GPS de alta precisión, del mismo tipo que se usa para el monitoreo tectónico y volcánico del país.

Equipo franco-ecuatoriano colocó un GPS en la cima del volcán Chimborazo

Foto 2: Imagen del sensor GPS junto con una parte del equipo de técnicos franco-ecuatoriano en la cima del volcán Chimborazo.  (Fotografía cortesía de la Revista Ñan).

 

Previamente a la ascensión el grupo de técnicos mantuvo varias reuniones con autoridades locales y provinciales en Riobamba, donde ofrecieron charlas informativas sobre la metas de este gran esfuerzo, el que muestra los sólidos lazos de colaboración entre científicos del Ecuador y de Francia.

Equipo franco-ecuatoriano colocó un GPS en la cima del volcán Chimborazo

Foto 3: El grupo de técnicos reunido en la alcaldía de Riobamba junto con autoridades.

 

Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Volcanes