Mostrando artículos por etiqueta: volcán - Instituto Geofísico - EPN

El día 28 de enero con el apoyo logístico de una aeronave de la empresa Alas de Socorro del Ecuador (ADS), se efectuó un sobrevuelo desde el aeropuerto de la ciudad de Shell en dirección a los volcanes Sumaco, Reventador, Soche, Imbabura y Complejo Volcánico Cotacachi - Cuicocha, en una avioneta CESSNA-206, siguiendo la ruta que se muestra en la Figura 1.

Resumen de las observaciones efectuadas durante el vuelo efectuado el 28 de enero de 2016

Figura 1: Ruta del vuelo efectuado el 28 de enero de 2016 (Base: Google Earth).

 


VOLCÁN SUMACO

Durante la aproximación al Volcán Sumaco se pudo apreciar que este se encontraba despejado en su totalidad (Fig. 2). Actualmente no presenta evidencias de actividad superficial.

Se obtuvieron imágenes térmicas que no muestran anomalías en el edificio.

Resumen de las observaciones efectuadas durante el vuelo efectuado el 28 de enero de 2016

Figura 2: Foto del flanco noroccidental del volcán. (Foto: P. Ramón, IG/EPN).

 


VOLCÁN REVENTADOR

Observaciones visuales
Durante la aproximación al Volcán Reventador se observó que este se encontraba despejado y que presentaba actividad fumarólica pulsátil y además pequeñas explosiones, cuyas emisiones mostraban contenidos de ceniza bajos a moderados, las que se dirigieron hacia el occidente. Se pudo apreciar los depósitos de flujos piroclásticos dispersos en todos los flancos del volcán que no alcanzan grandes distancias y se restringen únicamente al pie del cono actual. Al momento el volcán se encuentra emitiendo un flujo de lava desde un vento ubicado al norte y alineado en sentido N-S con el vento central; este nuevo flujo de lava que desciende por el flanco norte del volcán y aún no alcanza la parte baja del cono actual (Fig. 3), el vento central durante este vuelo se caracterizó por generar pequeñas explosiones, al pie del volcán se observó gran cantidad de balísticos producto de las explosiones más fuertes no evidenciadas durante esta visita. Además se pudo percibir fuerte olor a azufre producto de las grandes cantidades de gas disperso en el ambiente.

Resumen de las observaciones efectuadas durante el vuelo efectuado el 28 de enero de 2016

Figura 3: Foto del flanco suroccidental del volcán, se observa la emisión de gas sin contenido de ceniza además de los nuevos ventos y el flujo de lava del flanco norte. (Foto: M. Almeida, IG/EPN).

 


Monitoreo Térmico
Las condiciones climáticas fueron apropiadas para obtener imágenes de las anomalías térmicas. La temperatura máxima aparente (TMA) corresponde al Vento 1 con un valor de 501°C, seguido del Vento 2 con un valor de 372,8ºC y el flujo de lava norte con un valor de 324,6°C; ver Figura 4.

No se registraron otras anomalías de importancia en el volcán.

Resumen de las observaciones efectuadas durante el vuelo efectuado el 28 de enero de 2016

Figura 4: Imagen térmica que muestra los valores TMA del volcán. Abajo, fotografía correspondiente, muestra la débil emisión de gases que se dirigía al occidente (Imagen: P. Ramón /Fotografía: M. Almeida, IG-EPN).

 


VOLCÁN SOCHE

Observaciones visuales
Luego de que en los últimos años se efectuaron varios intentos para realizar monitoreo térmico y visual en este volcán, gracias a que el clima fue favorable, es la primera vez que personal del Instituto Geofísico - EPN ha logrado capturar información termal y visual de este volcán. Este se encuentra ubicado en la Provincia de Sucumbíos en el límite norte de la Cordillera Real del Ecuador (Figura 5) cerca de la frontera con Colombia, su altura es de 3955 msnm y pertenece al grupo de los volcanes potencialmente activos del Ecuador (Bernard & Andrade, 2011); actualmente no presenta evidencias de actividad superficial. En las imágenes térmicas no se registraron anomalías en el área correspondiente al Volcán Soche (Figura 6).

Resumen de las observaciones efectuadas durante el vuelo efectuado el 28 de enero de 2016

Figura 5: Imagen de la ubicación del Volcán Soche (11) (Base: Volcanes Cuaternarios del Ecuador Continental, Bernard y Andrade, 2011).

 

Resumen de las observaciones efectuadas durante el vuelo efectuado el 28 de enero de 2016

Figura 6: Foto del Volcán Soche. (Foto: J. García, IG/EPN).

 


VOLCÁN IMBABURA
Durante la aproximación al Volcán Imbabura se pudo apreciar que este se encontraba despejado en su totalidad. Actualmente no presenta evidencias de actividad superficial (Fig. 7).

Se obtuvieron imágenes térmicas en todo el edificio que no muestran anomalías.

Resumen de las observaciones efectuadas durante el vuelo efectuado el 28 de enero de 2016

Figura 7: Foto del flanco suroriental del volcán. (Foto: P. Ramón, IG/EPN).

 


COMPLEJO VOLCÁNICO COTACACHI - CUICOCHA
Durante la aproximación al Volcán Cotacachi y la Caldera Cuicocha se pudo apreciar que estos se encontraban despejados en su totalidad, actualmente estos no presentan evidencias de actividad superficial (Fig. 8).. Se obtuvieron imágenes térmicas principalmente de la caldera Cuicocha, la que no muestra anomalías.

Resumen de las observaciones efectuadas durante el vuelo efectuado el 28 de enero de 2016

Figura 8: Foto del flanco sur del volcán. (Foto: M. Almeida, IG/EPN).

 


MA-JG-PR-SV
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Volcanes

El día 26 de enero de 2016, con el apoyo logístico de una aeronave por parte del MICS, se efectuó un sobrevuelo desde el aeropuerto de Tababela en dirección al volcán Cotopaxi, en un avión Twin Otter de la FAE (452), al mando del Cap. Urquizo, siguiendo la ruta que se muestra en la Figura 1.

Resumen de las observaciones efectuadas durante el vuelo al volcán Cotopaxi del día 26 de enero de 2016

Figura 1: Ruta del vuelo efectuado el 26 de Enero de 2016 (Base: Google Earth).

 


Observaciones visuales
Las condiciones bajo las cuales se efectuó el vuelo fueron muy favorables, ya que el volcán se encontraba completamente despejado y por otro lado nubes muy altas permanecieron sobre el volcán (overcast) la mayor parte del tiempo, por lo que no hubo el efecto de la radiación solar sobre el volcán para la toma de imágenes térmicas. Durante la aproximación al volcán se observó que del cráter se emitía, de forma pulsátil, una débil columna de vapor de agua, la que mayormente se mantenía al interior del cráter, elevándose ocasionalmente a no más de 500 m sobre la cumbre y eventualmente se movía hacia el  W (Fig. 2).

Resumen de las observaciones efectuadas durante el vuelo al volcán Cotopaxi del día 26 de enero de 2016

Figura 2: Vista de los flancos superiores S ,SE y E, notar la débil emisión de vapor de agua que se mueve hacia el W (Foto: P. Ramón IG/EPN).

 

Dado que el volcán se encontraba completamente despejado, una vez más se pudo confirmar lo observado en ocasiones anteriores, la presencia de agua y humedad proveniente del contacto de las lenguas terminales de todos los glaciares con la superficie del terreno, a partir de estos se forman delgados hilos de agua los que descienden aguas abajo por los flancos hasta los drenajes principales del volcán, los cuales posiblemente dan lugar a la generación de pequeños lahares secundarios (fig. 2). En esta oportunidad fue evidente que, debido al aumento de la taza de fusión, los glaciares sufren desplazamientos pendiente abajo y dan lugar a la formación de grietas y fracturas sobre todo el casquete glaciar, pero que son especialmente notorias en los frentes terminales de todos los glaciares (Figura 3).

Resumen de las observaciones efectuadas durante el vuelo al volcán Cotopaxi del día 26 de enero de 2016

Figura 3: Izquierda, vista de los glaciares de los flancos S y SE completamente agrietados (Foto: P. Ramón IG/EPN).

 

En el flanco superior oriental se observó que el glaciar de esa zona ha experimentado una rápida fusión, lo cual ha provocado que se produzca caída de material desde la parte superior hacia el glaciar inferior, por lo que ahora presenta un color oscuro. Se debe indicar que ese material no estaba presente anteriormente, cuando se hicieron las observaciones del vuelo del 15 de diciembre, tampoco se trata de ceniza, ya que las caídas de ceniza no se produjeron hacia esta zona del volcán (Fig. 4).

Resumen de las observaciones efectuadas durante el vuelo al volcán Cotopaxi del día 26 de enero de 2016

Figura 4: Glaciares del flanco E, la fusión del glaciar superior y del borde del cráter provoca desprendimientos de material rocoso hacia el glaciar inferior, por lo que se presenta de color oscuro. (Foto: P. Ramón IG/EPN).

 


Monitoreo Térmico
Las buenas condiciones climáticas permitieron hacer medidas de temperatura de la mayoría de anomalías térmicas identificadas en el volcán. No se observaron mayores cambios en el cráter interno respecto a lo observado en el mes de noviembre, debido a las emisiones de vapor de agua durante la observación, las temperaturas (TMA) medidas en el fondo del cráter de  51,9°C son inferiores al valor real (Fig. 5, Tabla 1).

Resumen de las observaciones efectuadas durante el vuelo al volcán Cotopaxi del día 26 de enero de 2016

Figura 5: Sup.: Imagen térmica que muestra una TMA de 51.9°C en el fondo del cráter interno. Inf.: imagen visible correspondiente, la presencia de la emisión de vapor disminuye el verdadero valor de temperatura en el fondo del cráter. (Imagen/Fotografía: P. Ramón IG/EPN).

 

Con respecto a los campos fumarólicos se pudo determinar que los valores de TMA son en su mayoría similares o inferiores a los medidos el 15 de enero, a excepción de valores ligeramente más altos medidos en el Flanco Sur (1), Cráter Interno, Anillo de Arena Interno, Yanasacha, Glaciar Circular y Fumarola bajo Cumbre N (Tabla 1). A diferencia de lo observado a fines de septiembre de 2015, la actividad fumarólica en la mayoría de los campos ya no genera la precipitación y deposición mineral posiblemente de azufre (coloración verdosa).

Durante el presente sobrevuelo nuevamente se pudieron identificar anomalías termales relacionadas a los sectores en donde se ha depositado el material removilizado de las partes altas del cráter externo, especialmente en los flancos E y SE.  Estas zonas han alcanzado un valor de TMA de 14.7°C, Figura 4, Tabla 1.  Cabe indicar que toda la parte alta y media del glaciar se encuentra cubierta por este material, ayudando así al proceso de ablación en el glaciar, por disminución del albedo. Los valores de TMA de las anomalías térmicas identificadas se encuentran en la Tabla 1.

Resumen de las observaciones efectuadas durante el vuelo al volcán Cotopaxi del día 26 de enero de 2016

Tabla 1: Cuadro que muestra los valores de temperatura máxima aparente (TMA) de las diferentes anomalías térmicas identificadas en el volcán Cotopaxi, en amarillo los valores correspondientes al sobrevuelo efectuado el 26 de enero del 2016.

 


PR-MA-SV
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Volcanes

Actividad externa baja e interna moderada

Resumen
Durante las últimas semanas se ha observado una baja actividad externa en el volcán Cotopaxi, que está caracterizada principalmente por poca presencia de vapor en la cumbre, esporádicas columnas de gases y muy poca emisión de ceniza. Algunos parámetros de monitoreo (SO2, sismos tipo LP, tremor, ceniza) regresaron prácticamente a su nivel de base pre-eruptivo pero se siguen registrando sismos tipo VT's (~90 por día) y algunas explosiones internas indicando posiblemente la permanencia de una fuente de presión en el volcán. Al momento el escenario más probable es que la actividad superficial del volcán se mantenga a un nivel bajo. En este escenario se prevé que el volcán siga produciendo pequeñas emisiones de ceniza sin afectación a las poblaciones aledañas al volcán y  lahares secundarios que se queden dentro de los límites del Parque Nacional Cotopaxi como hasta ahora. No se descarta una mayor actividad del volcán en las próximas semanas pero es el escenario menos probable. Al final del informe se detallan estos escenarios.


Observaciones visuales
Durante las últimas semanas, las condiciones de observación visual han sido variables pasando por días completamente nublados hasta días completamente despejados. La actividad superficial ha estado caracterizada principalemente por emisiones de baja energía de gas al nivel del cráter alcanzando en ocasiones hasta 800 m sobre el nivel del mismo (Fig. 1A y 1B). El 24 de enero a las 18h43 TU (Tiempo Universal) se produjo una emisión con contenido bajo a moderado de ceniza que alcanzó 700 m snc (Fig. 2A y 2B) dirigida por el viento hacia el Occidente. Esta emisión coincide con un sismo de tipo híbrido (Magnitud 2.3).

Actualización de la Actividad Eruptiva del Volcán Cotopaxi - N° 3 - 2016

Figura 1. Emisión de gas alcanzando 800 m snc el 22/01/2016 asociada a dos sismos de Largo Periodo pequeños ocurrido a las 04h16 y 04h23 TU (A: 04h19 TU; B: 04h28 TU).

Actualización de la Actividad Eruptiva del Volcán Cotopaxi - N° 3 - 2016

Figura 2. Emisión de ceniza alcanzando 700 m snc el 24/01/2016 asociada a un sismo hídrido (Magnitud 2.3) ocurrido a las 18h42 TU (A: 18h43 TU; B: 18h46 TU).


Sismicidad
Durante la última semana, la actividad sísmica del volcán Cotopaxi no ha mostrado mayor cambio respecto a las semanas anteriores. El volcán continúa presentando principalmente eventos Volcano-Tectónicos (VT) con un promedio de alrededor de 90 VT/día (Fig. 3) y pocas explosiones pequeñas. La mayoría de estos eventos se localizaron bajo el cráter entre 2 y 10 km de profundidad con magnitudes entre 0.5 y 2.5 (Fig. 4). El número de eventos de Largo Periodo (LP) se mantiene en su nivel de base desde mediados de octubre de 2015 (< 5 LP/día; Fig. 5) al igual que los episodios de tremor.

Actualización de la Actividad Eruptiva del Volcán Cotopaxi - N° 3 - 2016

Figura 3. Número de eventos Volcano-Tectónico en el Cotopaxi hasta el 25/01/2016.

Actualización de la Actividad Eruptiva del Volcán Cotopaxi - N° 3 - 2016

Figura 4. Localización y magnitud de eventos Volcano-Tectónico en el Cotopaxi hasta el 27/01/2016.

Actualización de la Actividad Eruptiva del Volcán Cotopaxi - N° 3 - 2016

Figura 5. Número de eventos de Largo Periodo en el Cotopaxi hasta el 25/01/2016.


Deformación
Los resultados del inclinómetro de VC1 muestran un patrón de deformación casi plano desde finales de octubre para el eje radial y finales de noviembre para el eje tangencial. Sin embargo no se observa un regreso a los valores pre-eruptivos. Como consta en la Figura 6, no se observa una nueva deformación asociada a los VT's de las últimas semanas. Los demás instrumentos tampoco muestran una deformación del edificio volcánico.

Actualización de la Actividad Eruptiva del Volcán Cotopaxi - N° 3 - 2016

Figura 6. Deformación registrada en la estación inclinométrica VC1 comparada con el número de eventos sísmicos (M. Yépez, IGEPN).


Emisión del SO2
Las emisiones de SO2 se mantuvieron por debajo de 1000 ton/día en las últimas semanas (Fig. 7). Los valores obtenidos regresaron casi al nivel de base pre-eruptivo.

Actualización de la Actividad Eruptiva del Volcán Cotopaxi - N° 3 - 2016

Figura 7. Valores máximos del SO2 (dióxido de azufre) hasta el 27 de enero, 2016.


Caída de ceniza
Desde el 23 de noviembre de 2015 no se registraron caídas de ceniza significativas asociadas a la actividad del volcán. Las pequeñas emisiones de Enero probablemente no produjeron caídas de ceniza medibles en las proximidades del volcán.


Lahares
Desde el 28 de agosto de 2015 varios lahares secundarios se han producido en el volcán Cotopaxi. A diferencia de los lahares primarios que se originan por contacto del material volcánico incandescente con el hielo durante erupciones grandes, su origen se debe a intensas lluvias que caen en la parte alta del volcán y arrastran pendiente abajo la ceniza que se depositó en los flancos durante la fase eruptiva que empezó el 14 de Agosto de 2015. Esta mezcla inicial incorpora rocas y otro tipo de escombros al transportarse pendiente abajo, viajando hasta que la pendiente y su energía lo permitan. Algunos de estos lahares se han generado también debido a los deshielos que se han producido constantemente. El volumen esperado de los lahares secundarios producidos por las lluvias es mucho menor al esperado por las erupciones grandes del Cotopaxi. Hasta hoy se han registrado 39 lahares secundarios, la mayor parte de ellos han descendido por la quebrada Agualongo ubicada al occidente del volcán, y unos pocos por los flancos norte y nororiental. En general son lahares muy pequeños que no sobrepasan un caudal de 10 m³/s. Se detallan a continuación los lahares más caudalosos que se han registrado (Tabla 1).

Actualización de la Actividad Eruptiva del Volcán Cotopaxi - N° 3 - 2016

Tabla 1: Datos cuantitativos de los lahares más caudalosos registrados en el volcán Cotopaxi entre Agosto de 2015 y Enero de 2016.


Interpretación
Los datos de monitoreo obtenidos hasta el 28 de enero de 2016 indican que ciertos parámetros del monitoreo (SO2, LP's, tremor, ceniza) regresaron casi hasta el nivel de base pre-eruptivo. Todos estos parámetros están vinculados de alguna manera a la salida de gas. La deformación del edificio marca una pausa desde noviembre 2015 pero no ha regresado al nivel pre-eruptivo. Esto que indicaría que la intrusión magmática responsable de la actividad eruptiva entre Agosto y Noviembre 2015 permanece en el lugar de su último emplazamiento con un volumen considerable, el cual no ha disminuido de manera apreciable durante las semanas que duró la emisión de ceniza en este primer episodio de erupción. Adicionalmente los sismos de tipo VT's detectados de manera sostenida durante ya más de cuatro meses y las pequeñas explosiones registradas últimamente indicarían que sigue una fuente de presión al interior del volcán.

Una posible interpretación de este conjunto de resultados es que al momento la parte superior de la intrusión magmática se está transformando en un tapón poco permeable que no deja pasar los gases, los cuales se acumulan hasta producir una pequeña explosión interna. Los VT's podrían ser interpretados como pequeños movimientos de este tapón o pequeñas realimentaciones de magma cuyo volumen no altera el patrón de estabilidad que muestran los valores de deformación desde el fin de Noviembre. Al momento no hay evidencia de un cambio de comportamiento del Cotopaxi respecto a las últimas semanas pero no se puede descartar el inicio de un cambio de estos patrones de estabilidad actuales en plazos cortos. El IGEPN está muy atento de cualquier cambio en las condiciones presentadas por el volcán.


Escenarios
Al momento el volcán no presenta una actividad eruptiva significativa y en función de esto se propone tres escenarios organizados del más probable al menos probable:

  • 1) La actividad superficial se mantiene baja con ocasionales pequeñas emisiones de ceniza como la del 24 de enero de 2016 que no afectan a la comunidad. Lahares secundarios pequeños se pueden formar debido a la removilización del material eruptivo por lluvia o deshielo del glaciar afectando de manera leve únicamente la zona del Parque Nacional Cotopaxi como ya se ha evidenciado en el evento del 13 de enero de 2016. Este es el escenario más probable para las próximas semanas si no hay un inicio de cambios en los parámetros de monitoreo.
  • 2) Una explosión interna o un VT un poco más energético podrían producir fracturas en el tapón y producir una pequeña reactivación del volcán. En este caso se podrían reanudar las emisiones de ceniza acompañadas de posibles explosiones pequeñas a moderadas. Caídas de ceniza afectarían zonas cercanas al volcán en función de la velocidad y dirección del viento. Los depósitos de ceniza alcanzarían pocos milímetros de espesor. En este caso la nueva acumulación de material sobre el glaciar y los flancos del volcán podría aumentar el tamaño y la frecuencia de los lahares secundarios. Sin embargo estos también afectarían principalmente el Parque Nacional Cotopaxi.
  • 3) Un nuevo pulso de magma llega al reservorio pero su paso a la superficie está obstruido por un tapón, lo que provoca un aumento de la presión en el conducto volcánico. Eventualmente, la presión del magma vence la resistencia del tapón, produciendo una (o más) explosiones de tamaño moderado a grande con abundante incandescencia, caídas de bombas balísticas que alcanzan un máximo de 5 km desde el cráter y pequeños flujos piroclásticos (tipo Tungurahua julio 2013). Las caídas de ceniza son moderadas a fuertes en las direcciones predominantes del viento con una acumulación de algunos milímetros hasta pocos centímetros de ceniza cerca del volcán. Adicionalmente se pueden formar lahares por la mezcla del material volcánico con agua de derretimiento del glaciar. En este escenario los lahares podrían ser de tamaño pequeño hasta moderado y afectarían principalmente la zona del Parque Nacional Cotopaxi. También podrían bajar hasta zonas pobladas en los drenajes principales del volcán (ríos Pita, y/o Cutuchi y/o Alaquez y/o Jatunyacu), aunque sin mayor afectación. Al momento de la publicación de este informe este escenario es menos probable que 1) y 2) debido a la falta de evidencia de una nueva intrusión.
  • 4) no se descarta por completo una erupción de mayor magnitud asociado a una intrusión de mayor volumen que en el escenario 3). Al igual que el escenario 3), la falta de evidencia de una nueva intrusión de gran volumen hace que el escenario 4) sea el menos probable de todos. De todas maneras hay que recordar que los anteriores períodos eruptivos del Cotopaxi en los siglos anteriores se caracterizaron por durar muchos años y porque en dentro de este período de años se produjeron 1-2 erupciones mayores como la considerada en el escenario 4.

Estos escenarios podrán ser cambiados de acuerdo a la evolución de la actividad del volcán.


BB-SH-EV-SH-SA-HY-MR
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Volcanes

Los técnicos del Instituto Geofísico Freddy Vásconez, Jorge Córdova, Hugo Ortiz y Carlos Macías realizaron una visita al volcán Reventador del 14 al 16 de enero para el mantenimiento e instalación de equipos de vigilancia volcánica.

Actividades de mantenimiento e instalación en la zona del volcán Reventador

Figura 1. Técnicos del IG-EPN en las jornadas de trabajo de mantenimiento en la zona del volcán Reventador.

 

Actividades de mantenimiento e instalación en la zona del volcán Reventador

Figura 2. Mapa de ubicación de las estaciones IG-EPN en la zona del volcán Reventador.

 

Las labores que los técnicos realizaron comprenden las siguientes:
• Mantenimiento del arreglo del infrasonido y la estación sísmica sector LAV4.
• Mantenimiento de la repetidora Reventador-Petro
• Mantenimiento de la estación repetidora de Lumbaqui
• Mantenimiento del arreglo del infrasonido LAVA 9 y Azuela.
• Limpieza de paneles de la estación permanente REVN
• Instalación de la infraestructura para la estación de la cámara térmica en el borde norte de la caldera del volcán

Actividades de mantenimiento e instalación en la zona del volcán Reventador

Figura 3. Volcán Reventador, explosiones que alcanzaron la columna de ceniza 1.5 a 2km snc. (Foto: J. Córdova/IG-EPN).

 

Durante la jornada de trabajo del día 15 de enero del 2016 los técnicos observaron y documentaron varias explosiones, que tuvieron columnas de ceniza que alcanzaron entre 1.5 a 2 km de altura snc (figura 3). El 15 de enero, se observó un flujo piroclástico que descendió por el flanco norte y avanzó aproximadamente 500 m (Figura 4). Además se pudo identificar otros depósitos piroclásticos que descendieron durante las últimas 3 semanas (figura 5).

Actividades de mantenimiento e instalación en la zona del volcán Reventador

Figura 4. Volcán Reventador, imagen térmica del flujo piroclásticos descendiendo hasta 500 mbnc ocurrido el 15 de enero.

 

Actividades de mantenimiento e instalación en la zona del volcán Reventador

Figura 5. Volcán Reventador, depósitos de flujos piroclásticos que han descendido por el flanco norte llegando cerca de la estación CONE (Foto: J. Córdova, F. Vásconez/IG-EPN).

 

FV/HO/JC/MC/PE/PM
Instituto Geofísico
Escuela Politécnica Nacional

Publicado en Volcanes

VISITA TÉCNICA A LA ZONA DE LA QUEBRADA AGUALONGO EN EL PARQUE NACIONAL COTOPAXI DEBIDO AL LAHAR SECUNDARIO OCURRIDO EL 13 DE ENERO 2016

15 de enero de 2016

Como parte del estudio y monitoreo continuo que realiza el Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) de los volcanes del Ecuador, personal del IG-EPN junto a técnicos del MAE, PNC, MICS, SGR, MTOP, INAMHI y Gobernación de Cotopaxi realizaron una inspección de campo en la quebrada de Agualongo, ubicada en el flanco occidental del volcán Cotopaxi, el día 14 de enero del 2016 (Figuras 1, 2), en relación al descenso del flujo de lodo “lahar secundario” ocurrido el 13 de enero del 2016 a las 13h45, mismo que tuvo una duración aproximada de una hora.

2016 01 15 LaharSecundarioCoto001

Figura 1. Zona de la quebrada Agualongo, personal MAE, PNC, MIC, SGR, MTOP, INAMHI y Gobernación Cotopaxi en la inspección. El personal del IG-EPN dió una explicación técnica de las razones por las cuales se generó este lahar secundario. (Foto: P. Espín-IG-EPN)

2016 01 15 LaharSecundarioCoto002
Figura 2. Ubicación de la quebrada Agualongo en la zona del volcán Cotopaxi. Nótese la ubicación de la estación de monitoreo BNAS, la cual detectó el lahar secundario y permitió el aviso oportuno del mismo (~4km aguas arriba del puente sobre la Qbd. Agualongo).

Por parte del IG-EPN se dio una explicación sobre la actividad del volcán desde el 14 de agosto del 2015 hasta la fecha. De igual manera se dijo cuáles fueron las causas que desencadenaron este lahar secundario, se estimó que tuvo un volumen aproximado de 50.000 m3 y un caudal en el rango de 40 - 45 m3/s.
Hay que indicar que estos lahares producidos tanto el 29 de noviembre del 2015 y el 13 de enero del 2016 que superaron la calzada del puente sobre la quebrada de Agualongo son “secundarios” y son producidos por las fuertes lluvias que se han venido dando en las zonas altas del volcán Cotopaxi. Por tal motivo el personal del IG-EPN remarcó que la posibilidad de la ocurrencia de nuevos lahares de este tipo es alta considerando la epoca invernal y los pronósticos mencionados por el INAMHI.
Cabe reiterar que debido a las intensas caídas de ceniza registradas desde el 14 de Agosto hasta el 23 de Noviembre del 2015 (aproximadamente 1’072.000 m3 en volumen) conllevaron a una fuerte acumulación de la misma en los flancos del volcán. Debido a las intensas lluvias este material ha sido removilizado, conjuntamente con otro material suelto y más antiguo (rocas, pomez, etc. - depósitos de anteriores erupciones) lo que ha procurado la formación de estos lahares secundarios. Del registro que mantiene el IG-EPN se han contabilizado al menos 26 lahares secundarios desde el 28 de agosto del 2015 hasta la fecha, la mayoría de ellos relacionados a las fuertes lluvias en las partes altas del volcán.
Adicionalmente los técnicos del IG-EPN tomaron medidas de los espesores y varias muestras a lo largo del depósito del lahar secundario del 13 de enero que afectó el puente sobre la quebrada Agualongo, con el fin de describir sus características y determinar los parámetros físicos que definen el flujo con estudios realizados posteriormente en laboratorio.

2016 01 15 LaharSecundarioCoto003 2016 01 15 LaharSecundarioCoto004
Figura 3. Muestreo y toma de medidas del depósito dejado tras el paso del lahar secundario ocurrido el 13 de enero del 2016.

El IG-EPN se mantiene alerta a cualquier cambio en los parámetros de monitoreo del volcán y ante la posible generación de nuevos eventos de lahares secundarios. Mismos que serán informados con la prontitud del caso.


PE/FJV/MR

Publicado en Comunidad

MEDIDAS DE PARÁMETROS FISICO-QUÍMICOS DE LAS FUENTES TERMALES (COMPLEJO VOLCÁNICO CHILES Y CERRO NEGRO)

2016 01 09 Chiles1

Figura 1. Volcán Chiles (Foto: M. Córdova. IG-EPN).
Como parte del monitoreo de los volcanes Chiles y Cerro Negro personal del Instituto Geofísico IG-EPN en compañía de estudiantes de la carrera de Geología de la Escuela Politécnica Nacional el día 9 de enero de 2016,  realizaron el muestreo de aguas y  análisis de los parámetros físico químicos de las fuentes termales: Aguas Negras (nuevo punto de muestreo UTM: 18N    177179/89797), Aguas Hediondas y la fuente de Lagunas Verdes.

2016 01 09 Chiles2
Figura 2. Ubicación de las fuentes de muestreo de Aguas Hediondas, Lagunas Verdes y el nuevo punto de muestreo Aguas Negras.

Los parámetros medidos fueron pH, temperatura, conductividad del agua y la toma de muestra de cada fuente para su posterior análisis en laboratorios.
  2016 01 09 Chiles3         2016 01 09 Chiles4
AGUAS HEDIONDAS                                   LAGUNAS VERDES

2016 01 09 Chiles5

AGUAS NEGRAS
Figura 3. Muestreo de las Fuentes Termales por parte del personal del IG-EPN y el Sr. Pablo Pazpuel vigía de los volcanes Chiles y Cerro Negro.

Lugar pH Temperatura (ºC) Conductividad (uS/cm)
Aguas Hediondas 4.47 56.4 1900.4
Aguas Negras 5.82 35.82 1709.8
Lagunas Verdes 7.08 13.3 48.56

 

Tabla 1. Parámetros físicos tomados en las fuentes termales del 9 de enero de 2016


Durante los últimos meses, en las mediciones realizadas por parte del IGEPN no se han registrado cambios en las temperaturas de las fuentes medidas en la zona.
Hay que mencionar que en la zona de aguas hediondas en el punto donde se recolecta la muestra de gas, en esta ocasión ha sufrido ciertos cambios como la salida de agua y rocas ligeramente desplazadas, todo esto debido a un incremento en el nivel freático provocado por las lluvias.
A todos los puntos de muestreo se tuvo el acompañamiento del Vigía del complejo volcánico Cerro Negro y Chiles del señor Pablo Paspuel, quien tiene conocimiento de toda la zona del complejo.

MC/ME/ET

Publicado en Comunidad

Actualización de la Actividad Eruptiva del Volcán Cotopaxi - N° 01
Disminución de la actividad superficial

07 de enero de 2016

Resumen

Durante el mes de Diciembre de 2015 se ha observado  un bajo nivel de la actividad superficial en el volcán Cotopaxi, la cual está caracterizada por ligeras emisiones pulsátiles de gas, de color blanco provenientes del cráter y alcanzando excepcionalmente 1 km sobre el mismo. La presencia de ceniza ha sido casi nula,  como se pudo comprobar en los dos últimos recorridos de campo  realizados alrededor del volcán.
 
No obstante, la actividad interna se mantiene en niveles considerados como moderados. La actividad sísmica se mantiene similar a los niveles registrados el mes pasado, con pocos sismos de tipo LP, explosiones pequeñas y tremores de emisión.  Particularmente se destacan los sismos VT’s, en que su número se mantiene entre 30 a 100 sismos por día, similar a lo registrado en el período anterior. La mayoría de estos eventos tipo VT son de magnitudes bajas.
 
Los niveles del gas SO2 se han  mantenido en menos de 1000 ton/día, lo que es una reducción considerable con respecto a los 3000 ton/día registrados en  los meses precedentes.

Al momento la actividad del volcán está circunscrita a lo indicado en el Escenario “1” descrito en las actualizaciones previas y al final de este documento. Este escenario prevé que el volcán continuará produciendo leves emisiones, posiblemente explosiones ocasionales de tamaños pequeños a moderados y lahares secundarios que se quedarán al interior del área del Parque Nacional Cotopaxi.

Publicado en Volcanes

REUNIÓN DE VIGÍAS VOLCÁN TUNGURAHUA Y COTOPAXI

 

Con la organización de todos los Vigías del Volcán Tungurahua, con el apoyo del GAD Baños y el Instituto Geofísico (EPN- Quito y OVT), el día sábado 19 de diciembre del 2015 en la sala comunal de Juive Grande se realizó la reunión para los vigías del volcán Tungurahua y Cotopaxi.

2015 12 23 VigiasVTungCoto001

Foto 1. Miembros de los Vigías del Volcán Tungurahua y Cotopaxi (Prov. Cotopaxi y Pichincha), IGEPN, ECU911, SGR zona 3, GAD Baños, Cuerpo de Bomberos de Baños, GAD y UGR Pelileo asistentes a la reunión.

Se tuvo la presencia de los vigías del volcán Tungurahua tanto de la provincia de Tungurahua--Cantones Baños y Pelileo y Chimborazo- Cantón Penipe, vigías del volcán Cotopaxi (Provincia de Cotopaxi y Pichincha), miembros del IGEPN y OVT, GAD y UGR Baños, Coordinador SGR-Zona 3, GAD y UGR Pelileo, Cuerpo de Bomberos de Baños, ECU-911 y voluntarios de la Brigada de Baños.

Los objetivos de estas reuniones son:
- Mantener y fomentar la hermandad entre los vigías del volcán Tungurahua y Cotopaxi
- Reforzar los conocimientos sobre los procesos eruptivos
- Reconocimientos de fortalezas y debilidades en el grupo de vigías del volcán Tungurahua a lo largo de 15 años.
- Conocer el estado de la Red de Comunicación Radial que funciona en el volcán Tungurahua
- Presentación sobre las implicaciones de “Ser vigía” y entender la importancia de su aporte en la vigilancia volcánica a los nuevos vigías del volcán Cotopaxi.

2015 12 23 VigiasVTungCoto002 2015 12 23 VigiasVTungCoto003

2015 12 23 VigiasVTungCoto004 2015 12 23 VigiasVTungCoto005
Foto 2. Presentación de los asistentes a la reunión.

Como cronograma se desarrolló: Palabras del Sr. Marcelo Espinel (UGR-Baños), Palabras de los Vigías Víctor Zumba y Lourdes Fiallos (Choglontus-Penipe) y la Familia Chávez, Juive Grande, mentalizadores de la reunión. Se presentó los avances del video ”La Vida de los Vigías” (desarrollado por personal del IGEPN, donde se muestra las experiencias de los vigías del volcán Tungurahua y de los vigías del complejo volcánico Cerro Negro y Chiles en el sector de Tufiño-Carchi); palabras de la Ing. Patricia Mothes, Jefa, Área de Vulcanología, Instituto Geofísico; una charla sobre los fenómenos volcánicos que se han dado en los volcanes Tungurahua, Cotopaxi y Reventador (reforzando los conocimientos aprendidos) por parte del Ing. Pedro Espín Bedón del IGEPN y finalmente, se compartió las experiencias de cada uno de los vigías del volcán Tungurahua durante estos 15 años del proceso de erupción del volcán.

2015 12 23 VigiasVTungCoto006 2015 12 23 VigiasVTungCoto007

2015 12 23 VigiasVTungCoto008 2015 12 23 VigiasVTungCoto009

Foto 3. Participación de los diferentes miembros durante la reunión y presentación del video desarrollado por miembros del IGEPN.

Adicionalmente se tuvo un momento de esparcimiento donde se compartió dinámicas de integración y un almuerzo preparados por los vigías del Tungurahua y se finalizó esta convivencia con varias reflexiones y conclusiones sobre todas las experiencias compartidas en la reunión y la entrega de certificados a los vigías por su ardua labor durante estos años de capacitación y manejo de la comunicación en el volcán Tungurahua.

2015 12 23 VigiasVTungCoto010

Foto 4. Dinámica para la integración de las personas que asistieron a la reunión
2015 12 23 VigiasVTungCoto011
Foto 5. Almuerzo organizado por los vigías del volcán Tungurahua.
2015 12 23 VigiasVTungCoto012 2015 12 23 VigiasVTungCoto013

2015 12 23 VigiasVTungCoto014
Foto 6. Entrega de certificados de reconocimientos a los vigías del volcán Tungurahua por parte de Patricia Mothes (IGEPN) y Marcelo Espinel (UGR-GAD Baños)

2015 12 23 VigiasVTungCoto015

Foto 7. Entrega de un presente por parte de Marcelo Espinel (GAD Baños) a los vigías del Volcán Cotopaxi asistentes a la reunión.


PE/SAL/PM/MH
19 de diciembre del 2015
OVT-IGEPN

Publicado en Comunidad

Entre el lunes 7 y sábado 12 de diciembre técnicos del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) realizaron mediciones de gravimetría en el volcán Cotopaxi. Estas campañas se realizan periódicamente para conocer la actividad interna del volcán, lo cual se complementa al monitoreo del resto de parámetros que se miden continuamente como sismicidad, deformación, gases y ceniza.

Campaña de gravimetría en el volcán Cotopaxi

 

El IG-EPN con el fin de aplicar la mejor tecnología y ciencia para monitear la actividad del volcán, realiza mediciones de gravimetría. Esta técnica permite estimar parámetros como:
* Movimiento de magma
* Volumen de magma
* Profundidad y distancia desde el punto de medida
* Densidad del magma

Se realizaron mediciones en los flancos occidental, oriental, refugio y cerca a la entrada al parque Nacional Cotopaxi. Esta técnica también es aplicada en varios volcanes como el Etna, Campi Flegrei, Rabaul, Krafla, entre otros. La amplia red de monitoreo y técnicas aplicadas por el IG-EPN convierte al Cotopaxi en uno de los volcanes mejor monitoreados a nivel del continente.

AC/SA/FM
Instituto Geofísico
Escuela Politécnica Nacional

 

Publicado en Comunidad

El jueves 10 de diciembre el Sr. Cristian Panchana, miembro del Área de Vulcanología del IGEPN y estudiante de la carrera de Ingeniería Geológica de la Escuela Politécnica Nacional, dio una charla sobre “Estudio de los Domos del Volcán Quilotoa y su Correlación con la Estratigrafía del Volcán”. El evento se llevó a cabo en la Facultad de Geología y Petróleos de la EPN y representa un avance nuevo en los estudios sobre el Volcán Quilotoa. El trabajo fue parte de su Proyecto de Titulación previo a la obtención del título de ingeniero geólogo.

El ahora Ing. Panchana se refirió a la identificación de dieciocho domos alrededor de la caldera actual del volcán en base a sus estudios petrográficos detallados.  Estos domos se formaron durante los últimos cuatro ciclos eruptivos (correspondientes a los últimos 34.000 años), de los trece ciclos eruptivos que comprenden la totalidad de la historia geológica del volcán que lleva alrededor de dos cientos mil años.

Los 18 domos del volcán Quilotoa y su correlación con la estratigrafía del volcán

Foto 1. Vista hacia el Norte del Volcán Quilotoa, fotografía tomada por J. Anhalzer.

Los 18 domos del volcán Quilotoa y su correlación con la estratigrafía del volcán

Foto 2. El Sr. Cristian Panchana dando su charla en la Facultad de Geología y Petróleos de la Escuela Politécnica Nacional. Fotografía tomada por E. Telenchana – IGEPN.

Los 18 domos del volcán Quilotoa y su correlación con la estratigrafía del volcán

Foto 3. Recolectando muestras en el borde suroriental de la caldera del volcán. Fotografía tomada por P. Ball.

Los 18 domos del volcán Quilotoa y su correlación con la estratigrafía del volcán

Foto 4. Mapa resultante del estudio petrográfico, donde se representan con números los dieciocho domos identificados, los cuales además, se encuentran separados por color según su edad y el ciclo eruptivo al cual pertenecen.

Publicado en Comunidad