Reseña del Área de Desarrollo del Instituto Geofísico
Noticias

Noticias

Subcategorías

Sismos

Sismos

Uno de sus objetivos fundamentales es el monitoreo sísmico permanente de la actividad de origen tectónico y volcánico del territorio nacional.

Ver artículos...
Volcanes

Volcanes

Los volcanes activos son observados a través de diversas tecnologías.

Ver artículos...
Instrumentos

Instrumentos

La tecnología comprende un conjunto de teorías y técnicas que permiten el aprovechamiento práctico del conocimiento científico. No es de sorprenderse que a diario aparezcan nuevas técnicas y revolucionarias teorías que permitan que la tecnología avance a pasos agigantados, facilitando procesos y resolviendo problemas dentro de diversas áreas del quehacer de la comunidad en general.


Desde su creación, el IG ha visto la necesidad de utilizar instrumentos que le permitan realizar una precisa vigilancia tanto en sísmica como en varios otros parámetros relacionados al vulcanismo.

Ver artículos...

La Comisión de Química de Gases Volcánicos cuyo acrónimo es CCVG (Commission on the Chemistry of Volcanic Gases), es una subcomisión de la Asociación Internacional de Vulcanología y Química del Interior de la Tierra (IAVCEI). Fue creada a principios de los años 80 con el fin de reunir a los científicos interesados en el estudio de los gases volcánicos.

El Décimo Tercer taller de la CCVG, “Gas Workshop 2017”, fue llevado a cabo en el territorio ecuatoriano entre el 19 de septiembre y el 9 de octubre de este año. Contando con la participación de expertos en el área de geoquímica de fluidos volcánicos provenientes de todo el mundo: Alemania, Argentina, Bélgica, Costa Rica, Chile, España, Estados Unidos, Singapur, México, Islandia, Italia, Japón, Portugal, Perú, Rumania, Rusia, Suiza, entre otros.

El Instituto Geofísico de la Escuela Politécnica Nacional fue el anfitrión y organizador local del evento. Se llevaron a cabo diversas visitas de campo. Empezando por una visita al volcán Reventador, que ha presentado una intensa actividad eruptiva desde junio de 2017. Durante esta visita los científicos pudieron llevar a cabo mediciones del gas volcánico mediante de sensores remotos, como cámaras UV y MAX-DOAS. Adicionalmente se midieron las temperaturas de las emisiones usando una cámara térmica.

Décimo Tercer Taller Internacional de Gases Volcánicos, Ecuador 2017

Figura 1.- a) Participantes del workshop, durante la excursión al volcán reventador (foto: Artur Lonescu b) Volcán reventador con columna de emisión de Ceniza (Foto: Elizabeth Gaunt).


El taller continuó con un ciclo de conferencias y presentación de posters llevado a cabo en la ciudad de Baños. Aquí, los científicos pudieron compartir los últimos avances en geoquímica de fluidos a nivel mundial. Hubo además una serie de espacios de diálogo facilitando el intercambio de ideas, experiencias, presentación de nuevos instrumentos, etc.

Décimo Tercer Taller Internacional de Gases Volcánicos, Ecuador 2017

Figura 2.- a) Ciclo de conferencias en la ciudad de Baños b) Presentación de posters (fotos: Artur Lonescu).


Se realizaron además mediciones en las principales fuentes termales del Volcán Tungurahua: La Virgen, El Salado y Santa Ana. Acompañadas con la recolección de muestras de gases y agua que serán analizadas en varios laboratorios de todo el mundo.

Décimo Tercer Taller Internacional de Gases Volcánicos, Ecuador 2017

Figura 3.- a) Participantes del curso realizando trabajos de muestreo en las termas de El Salado b) muestreo de gases (foto: Diego Narváez).


Adicionalmente se realizaron trabajos de campo en el Volcán Guagua Pichincha donde un grupo de científicos descendieron al cráter para hacer un muestreo de los campos fumarólicos. Se realizó una campaña de medición de CO2 difuso en Pululahua y una campaña de medición de gases con equipos remotos (móvil DOAS y cámaras UV) en el volcán Cotopaxi.

Décimo Tercer Taller Internacional de Gases Volcánicos, Ecuador 2017

Figura 4.- a) Descenso al cráter del Guagua Pichincha para muestreo de fumarolas (foto: Francisco Vásconez). b) Mediciones de CO2 difuso en las fuentes de agua del Volcán Pululahua (foto: Artur Lonescu) c) Medicion de gases con sensores remotos en Volcán Cotopaxi (foto: Daniel Sierra).


Para finalizar este taller investigativo, algunos de los participantes viajaron al Archipiélago de Galápagos para realizar actividades de muestreo directo en los campos fumarólicos de Minas de Azufre en el volcán Sierra Negra (Isla Isabela).

Décimo Tercer Taller Internacional de Gases Volcánicos, Ecuador 2017

Figura 5.- a) Mediciones con sensores remotos en la zona de Minas de Azufre. b) muestreo directo de los gases fumarólicos (fotos: Patricio Ramón).


Las actividades llevadas a cabo durante el “Gas Workshop 2017”, no solo han permitido a los técnicos nacionales asimilar nuevos conocimientos de los científicos extranjeros sino tambien compartir experiencias. Los participantes tuvieron la oportunidad de visitar las instalaciones del IG-EPN (Quito), del Observatorio del volcán Tungurahua (Guadalupe) y aprender sobre el sistema de vigías del volcán, el cual se ha convertido un referente en el manejo de crisis volcánicas a nivel mundial.

Décimo Tercer Taller Internacional de Gases Volcánicos, Ecuador 2017

Figura 6.- a) participantes del Workshop visitan la estación Ventanas en Runtún-Baños y conversan con Carlos Sánchez (vigía del volcán Tungurahua) (foto: Clara Lamberti). b) Participantes del workshop visitan las instalaciones del IG-EPN en Quito (foto: Daniel Sierra).


Además, las actividades de campo realizadas durante el taller, generarán una gran cantidad de datos e información muy útil para el entendimiento de la dinámica de los volcanes Ecuatorianos.

DS/FJV/SH
Instituto Geofísico
Escuela Politécnica Nacional

Entre el 18 y el 20 de septiembre de 2022, técnicos del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) realizaron la recolección de muestras de ceniza y el mantenimiento de la red de cenizómetros ubicados en las comunidades al occidente del volcán Sangay, en la Provincia de Chimborazo (Fig. 1).

Trabajo de campo
El volcán Sangay, ubicado en la provincia de Morona Santiago, es uno de los volcanes más activos del país. Desde 2019 presenta una actividad eruptiva catalogada como de nivel moderado a alto. Han ocurrido constantes emisiones y caídas de ceniza que han afectado ampliamente a comunidades localizadas al Occidente del volcán. La ceniza puede resultar peligrosa para la salud, causando irritación de piel y ojos, así como problemas respiratorios. De igual forma la ceniza ha impactado la agricultura y ganadería. El mantenimiento de los cenizómetros permitió a los técnicos del IG-EPN recolectar muestras de ceniza asociadas a las emisiones ocurridas entre el 12 de septiembre y el 18 de octubre de 2022 (Fig. 2). Durante este periodo se han reportado 158 alertas de dispersión de ceniza poco energéticas (menor a 3000 metros sobre el nivel de cráter), una de las cuales alcanzó hasta 450 km de distancia desde el volcán según los reportes satelitales del Centro de Alertas de Ceniza Volcánica de Washington (Washington VAAC). Estas emisiones de ceniza se dirigieron principalmente hacia el occidente y noroccidente del volcán, sobrepasando la línea costera y provocando caída de ceniza principalmente en la provincia de Chimborazo.

La red de cenizómetros permitió cuantificar la cantidad de ceniza en cada una de las siguientes poblaciones:

  • Caída moderada: Rayoloma (186.2 g/m2), San Nicolás (148.3 g/m2), Retén (140.8 g/m2), Cashapamba (123 g/m2), Pancún (100.6 g/m2).
  • Caída leve: Cebadas (95.4 g/m2), Vía Oriente (83.3 g/m2), Cebadas 02 (75.8 g/m2), Guamote (73.4 g/m2), (73.0 g/m2), Chauzán 02 (46.3 g/m2), Palmira Dávalos (31.3 g/m2), Utucún 4 Esquinas (29.5 g/m2), San Antonio 02 (25.7 g/m2, desde el 20/09 al 19/10), Palmira (24.8 g/m2), Alausí (20.6 g/m2), Flores (20.6 g/m2), Piscinas de Atillo (12.2 g/m2), Pallatanga (10.3 g/m2), Punto Cero Atillo (10.3 g/m2).
  • Caída muy leve: Juan de Velasco (9.4 g/m2), Chaguarpata (8 g/m2), Colta (6.5 g/m2), Huigra (5,1 g/m2), Chauzán 01 (4.7 g/m2), Cumandá (2.8 g/m2).

Posteriormente, la ceniza recolectada es analizada en el laboratorio del IG-EPN para determinar su contenido, composición y principales características; esto permite obtener información fundamental para una mayor comprensión y evaluación de la amenaza.

Recolección de ceniza y mantenimiento de la red de cenizómetros del volcán Sangay, provincia de Chimborazo
Figura 1. Ubicación de los Cenizómetros del Instituto Geofísico (IG) y de los Observadores Volcánicos (OV) con la carga de ceniza en la zona occidental del volcán Sangay (Fuente: Google Earth Pro).


Los cenizómetros son recipientes especialmente diseñados para la recolección de muestras de caídas de ceniza. Los datos obtenidos a través de esta red permiten a los técnicos llevar un control periódico de la dispersión y el volumen de ceniza que emiten los volcanes. Además, permiten recolectar muestras no contaminadas que se analizan posteriormente en laboratorio para conocer su composición y, en base a esto, evaluar la actividad de los volcanes en erupción y la peligrosidad de la ceniza volcánica emitida.

Recolección de ceniza y mantenimiento de la red de cenizómetros del volcán Sangay, provincia de Chimborazo
Figura 2. Mantenimiento de la red de cenizómetros con contenido muy leve a moderado de ceniza en su interior en varias comunidades de la provincia de Chimborazo, localizadas al occidente del Volcán Sangay por parte del personal del IG-EPN (Fotos: A. Vásconez, M. Encalada y E. Telenchana/IG-EPN).


Por otra parte, los Observadores Volcánicos de varias comunidades de las parroquias Cebadas y Palmira del cantón Guamote también procedieron a realizar el mantenimiento de cenizómetros y entregar sus respectivos filtros (Fig. 3). En ese sentido, a varios Observadores se les explicó cómo realizar el mantenimiento y la forma de compartir la información recolectada y observaciones a través de la aplicación para celulares App_OV.

Recolección de ceniza y mantenimiento de la red de cenizómetros del volcán Sangay, provincia de Chimborazo
Figura 3. Mantenimiento de los cenizómetros con los Observadores Volcánicos de varias comunidades de las Parroquias de Cebadas y Palmira. (Fotos: A. Vásconez, M. Encalada y E. Telenchana/IG-EPN).


El Instituto Geofísico continuará con las campañas de recolección de ceniza y el mantenimiento de la red de cenizómetros del volcán Sangay en la provincia de Chimborazo.

E. Telenchana, A. Vásconez, M. Encalada
Instituto Geofísico
Escuela Politécnica Nacional

Con el objetivo de fortalecer la vigilancia de los procesos volcánicos y contar con la información necesaria para el entendimiento sobre la geodinámica que presenta la caldera de Potrerillos, el Instituto Geofísico de la Escuela Politécnica Nacional, en compañía de vigías y habitantes del sector de Tufiño en la provincia del Carchi, realizaron una serie de trabajos que culminaron exitosamente con la instalación de una estación GNSS de monitoreo geodésico.

Instalación de una base continua GPS en el sector norte de la Caldera de Potrerillos para la vigilancia de la deformación en la Reserva Ecológica El Ángel (Carchi)
Personal del IG-EPN en conjunto con vigías y habitantes de Tufiño, luego de instalar la nueva estación geodésica TOAL, ubicada en el sector de la Tola Alta, en la parte norte de la caldera de Potrerillos, en las inmediaciones de la Reserva Ecológica “El Ángel”. La infraestructura observada corresponde a los sistemas de alimentación y cajas con equipos, que fueron donados por USAID a través del Programa de Asistencia ante Desastres Volcánicos (VDAP). Nótese en la parte superior izquierda, se encuentra la antena geodésica con forma de disco, sobre un gran afloramiento de roca.


Instalación de una base continua GPS en el sector norte de la Caldera de Potrerillos para la vigilancia de la deformación en la Reserva Ecológica El Ángel (Carchi)
Vigías voluntarios y residentes de Tufiño, junto al personal del IG-EPN durante los trabajos de preparación de los materiales, que serían transportados a pie y con la ayuda de caballos, desde Tufiño hacia el sector de Tola Alta en la Reserva Ecológica El Ángel.


Las actividades se desarrollaron durante la semana del 24 al 28 de octubre, en la cual se cumplieron actividades de búsqueda de sitio, estudio e implementación de enlaces de transmisión, transporte de equipos y materiales, edificación de infraestructura, conexión de dispositivos y sistema de alimentación, configuración de equipos y puesta en marcha de la estación.

Instalación de una base continua GPS en el sector norte de la Caldera de Potrerillos para la vigilancia de la deformación en la Reserva Ecológica El Ángel (Carchi)
Trabajos de perforación y adecuación de la antena geodésica, sobre un afloramiento de roca. La antena geodésica es la encargada de la detección de ondas provenientes de la constelación de satélites GNSS. Las ondas electromagnéticas son amplificadas y enviadas en forma de señales eléctricas hacia un equipo receptor GPS, que se encarga de muestrear y decodificar las señales, calcular la posición y almacenar la información adquirida.


Instalación de una base continua GPS en el sector norte de la Caldera de Potrerillos para la vigilancia de la deformación en la Reserva Ecológica El Ángel (Carchi)
Labores de levantamiento de la infraestructura para los equipos y el sistema de alimentación por energía solar.


Los datos generados por el equipo GPS permiten conocer diariamente la posición exacta de la antena con precisión milimétrica. En caso de existir deformación en Potrerillos, los datos brindarán información sobre las magnitudes y direcciones de los desplazamientos superficiales detectados, en base a los que se puede construir modelos y así determinar la ubicación y geometría de la fuente de deformación.

El Instituto Geofísico desea manifestar su sincero agradecimiento por todo el apoyo recibido de parte de la Agencia Internacional para el Desarrollo de los Estados Unidos (USAID) a través del Programa de Asistencia ante Desastres Volcánicos (VDAP), que entregó en donación toda la infraestructura, así como los dispositivos y equipos que fueron instalados en esta nueva estación permanente GPS. De la misma manera, agradecemos al Instituto Panamericano de Geografía e Historia (IPGH), que por medio del proyecto: “Implementación de métodos gravimétricos y sísmicos para el estudio de calderas volcánicas. Caso de estudio: Calderas fronterizas de la zona de Potrerillos/Chiles, Ecuador-Colombia” financió los trabajos y gastos relacionados, que hicieron posible el cumplimiento de los objetivos propuestos. También deseamos reconocer la ardua labor de los vigías y pobladores de Tufiño que colaboraron en los trabajos de transporte y levantamiento de la base de monitoreo.

M. Yépez, R. Toapanta, C. Macías,P. Mothes
Instituto Geofísico
Escuela Politécnica Nacional

Incremento en la actividad superficial e interna del volcán Cotopaxi

Resumen
El día 21 de octubre a las 19h44, las estaciones sísmicas en los flancos del Cotopaxi empezaron a registrar una señal sísmica de tipo tremor de baja frecuencia de larga duración y pequeña amplitud. Esta señal, se mantuvo hasta las 00h40 del sábado 22 de octubre y fue acompañada por la emisión de gases y ceniza, produciendo una caída moderada de este material en el Refugio José Rivas. La columna volcánica fue detectada por el Centro de Avisos de Cenizas Volcánicas de Washington (W-VAAC), indicando una dirección de la nube de ceniza hacia el nororiente. Desde este evento se ha observado una emisión continua de gases desde el cráter del volcán alcanzando una altura variable entre 200 y 1000 m sobre el nivel del mismo.

Esta reactivación volcánica no ha presentado señales premonitoras de mediano plazo. Al momento, los parámetros de vigilancia analizados (sismicidad, gases y ceniza) indican un aporte magmático para esta reactivación. Si bien la actividad superficial del 21 de octubre es la mayor registrada en los últimos siete años, es muy pequeña en comparación con lo observado entre agosto y noviembre de 2015.

La incertidumbre con respecto a la evolución de esta actividad es muy grande debido a la falta de señales premonitoras claras de estos eventos. En este sentido es importante mantener activo el sistema de vigilancia y continuar con las tareas de prevención y mitigación relacionadas con los escenarios eruptivos del volcán Cotopaxi. El IGEPN se mantiene atento a cambios en las condiciones presentadas por el volcán para dar, en lo posible, información oportuna a las autoridades y la población en general.

Informe Volcánico Especial Cotopaxi No. 2022-001
Emisión de gases del volcán Cotopaxi tomada durante el sobrevuelo provisto por las Fuerzas Armadas, el 27 de octubre de 2022 (Foto: S. Hidalgo).



Anexo técnico-científico

Registro Sísmico
El viernes 21 de octubre, aproximadamente a las 19h44 hora local, se registró un episodio de tremor volcánico en la red local de vigilancia sísmica, especialmente en la estación sísmica BREF, situada 2.4 km al norte de la cumbre del volcán. La secuencia se inicia a las 19h44 con un evento de alta frecuencia de magnitud 0.7 (Fig. 1, flecha negra). Minutos más tarde, comienza el episodio de tremor volcánico. La fase más intensa del tremor duró aproximadamente 4 horas.

La amplitud del tremor se caracteriza como pequeña. Como comparación, el tremor del 21 de octubre 2022 apenas sobrepasó la mitad de las amplitudes de los episodios de tremor que se registraron durante el proceso eruptivo de 2015. Además, el tremor del 21 de octubre constituyó un solo pulso de 4 horas, mientras que en 2015 esos episodios duraron varios días. Esto significa que el tremor del 21 de octubre fue energéticamente pequeño comparado con otros episodios del pasado.

Informe Volcánico Especial Cotopaxi No. 2022-001
Figura 1. Traza sísmica de la estación BREF, ubicada cerca al Refugio José Ribas en el flanco norte del volcán Cotopaxi. Cada línea corresponde a una hora de datos en tiempo local. A partir de las 19h44 (flecha negra), se nota un evento que parece dar inicio al episodio de tremor. Los datos están filtrados entre 0.5-16 Hz para resaltar el episodio de tremor volcánico de esa noche.


En los días y semanas anteriores, la sismicidad diaria no mostró anomalías ni cambios relevantes fuera del nivel de base establecido posterior a la erupción del 2015.


Deformación

Para el análisis de deformación, se realizó el procesamiento de estaciones GPS que están ubicadas en los flancos del volcán, de inclinómetros y de imágenes satelitales procesados con el método InSAR. En ninguna de estas técnicas se observa evidencia de deformación en el edificio volcánico.

En el procesamiento InSAR de las imágenes TerraSAR-X no se observa ninguna evidencia de inflación en las semanas precedentes al evento del 21 de octubre (Fig. 2).

Informe Volcánico Especial Cotopaxi No. 2022-001
Figura 2: Imagen InSAR de Cotopaxi, Satélite TerraSAR-X (20201106-20220930), track descendente. La barra del lado derecho muestra que las zonas azules están asociadas con “deflación” en el flanco occidental del cono. La velocidad del cambio en los flancos ha sido negativa.


El procesamiento de los GPS continuos tampoco muestra evidencia de deformación desde el año 2016, manteniéndose una tendencia horizontal. Esto se muestra en la Figura 3 para la estación ubicada en el flanco oriental del volcán.

Informe Volcánico Especial Cotopaxi No. 2022-001
Figura 3.- Gráfico del registro de la componente E-W de una estación GPS en el flanco oriental del Cotopaxi.


El inclinómetro del Refugio presenta en la actualidad únicamente el patrón cíclico que responde a las variaciones anuales del clima. Para el mes de octubre en los últimos años, se observa que el valor relativo de inclinación en promedio alcanza los 75 urad, con un valor máximo de 80 urad (Fig. 4).

Informe Volcánico Especial Cotopaxi No. 2022-001
Figura 4.- Serie temporal del inclínómetro instalado en las cercanías del Refugio del Volcán Cotopaxi.

Nubes y caídas de cenizas
El Centro de Avisos de Cenizas Volcánicas de Washington (W-VAAC por sus siglas en inglés) reportó una difusa nube de ceniza visible en el satélite GOES-16 dirigida hacia el nororiente (Fig. 5) a las 22h00 tiempo local el 21 de octubre (03h00 UTC el 22/10) con una altura estimada entre 1.7 y 2.3 km sobre el nivel del cráter del Cotopaxi (7.6-8.2 km sobre el nivel del mar). Desde el final de la erupción de 2015, la W-VAAC ha reportado cuatro nubes adicionales (04/07/2016; 23/01/2017; 15/07/2018; 10/01/2020), sin embargo, no hubo actividad sísmica ni depósito de ceniza asociado a estos eventos.


Informe Volcánico Especial Cotopaxi No. 2022-001
Figura 5. Aviso de nube de ceniza de las 03h00 UTC del 22/10/2022 (fuente: W-VAAC).


La caída de ceniza fue reportada desde el refugio norte del volcán por un grupo de andinistas de la Asociación Ecuatoriana de Guías de Montaña (ASEGUIM). El 22 de octubre un grupo de técnicos del IG-EPN realizó una visita de campo al refugio y tomo una muestra sobre el techo del refugio (Fig. 6A). Adicionalmente, Cristian Rivera, guía de ASEGUIM, también muestreó la caída de ceniza sobre su vehículo parqueado durante la caída de ceniza en el parqueadero del refugio (Fig. 6B). Finalmente, técnicos del IG-EPN recuperaron una muestra adicional el día 25 de octubre, gracias a la acumulación de este material sobre el panel solar de una estación del INAMHI ubicada en el flanco del volcán (Fig. 6C). Cabe recalcar que los andinistas que suben al Cotopaxi han reportado depósitos de ceniza en ocasiones anteriores, más recientemente el 27/11/2021. Sin embargo, la caída de ceniza del 21/10/2022 se destaca como la más intensa.

Informe Volcánico Especial Cotopaxi No. 2022-001
Figura 6. Fotos de los depósitos asociados a la caída de ceniza del 21/10/2022. A: Refugio del Cotopaxi (foto: Benjamin Bernard, IG-EPN); B: Carro cubierto de ceniza (foto: Cristian Rivera, ASEGUIM); C: panel solar de una estación del INAMHI (foto: Marco Solís, IG-EPN).


Las muestras fueron secadas y pesadas en el laboratorio del IG-EPN. Los resultados indican que la caída de ceniza fue moderada en el sector del refugio (Fig. 7A). La imagen del satélite Sentinel-2 en colores naturales muestra el depósito de ceniza en el flanco norte el 23 de octubre de 2022 (Fig. 7B). Depósitos de ceniza en el glaciar se han visto también previamente en las imágenes del satélite Sentinel-2 desde 2015 como el 27/11/2021. Sin embargo, es la primera vez desde la erupción de 2015 que la ceniza cubre un área tan extensa.

Informe Volcánico Especial Cotopaxi No. 2022-001
Figura 7. A) Mapa de ubicación y carga de los sitios de muestreo de la caída del 21/10/2022 (fondo: Google Earth); B) Imagen satélite Sentinel 2 (Bandas visible 4, 3, 2) de la caída de ceniza en el glaciar del Cotopaxi del 23/10/2022 (fuente: Sentinelhub Playground).


La muestra más pura (sin evidencia de removilización ni contaminación) correspondiente al refugio fue analizada en el laboratorio del IG-EPN con el fin de caracterizar sus componentes. El análisis de la distribución granulométrica (Fig. 8) realizado con tamizaje manual (entre 1000 y 63 µm) y difracción láser (entre 5000 y 0.03 µm) muestra que la ceniza es extremadamente fina (tamaño medio 55 µm) y bimodal (modo grueso a 152 µm y modo fino a 15 µm). Las cantidades de ceniza inhalable (PM100 = <100 µm, pueden ingresar al sistema respiratorio), torácica (PM10 = <10 µm; puede ingresar a los pulmones) y respirable (PM4 = <4 µm; puede ingresar en los alvéolos), indican que la ceniza tiene un potencial patológico moderado.

Informe Volcánico Especial Cotopaxi No. 2022-001
Figura 8. Distribución granulométrica de la muestra recolectada en el refugio del Cotopaxi el 22/10/2022 (tamizaje: Anaís Vásconez y Edwin Telenchana; difracción láser: Benjamin Bernard; síntesis y deconvolución: Benjamin Bernard; software deconvolución DECOLOG 6.0).


El análisis de los componentes de la ceniza realizado al microscopio binocular muestra que en la fracción de 125 a 180 µm, los componentes dominantes (78%) son fragmentos accidentales (rocas antiguas del conducto volcánico con diferentes grados de alteración; A1 a A3 en Fig. 9). Sin embargo, aproximadamente 22% de los componentes son fragmentos juveniles (partículas con vidrio volcánico sin evidencia de alteración (J1 a J3 en Fig. 9), lo cual indica la participación directa de magma en el proceso eruptivo. Tanto al nivel de tamaño de grano como al nivel de componentes, la ceniza emitida el 21/10/2022 es comparable a la ceniza emitida el 14/08/2015. Una diferencia observada en el campo es un menor olor a azufre para el depósito del 21/10/2022.

Informe Volcánico Especial Cotopaxi No. 2022-001
Figura 9. Componentes de la ceniza caída en el refugio del Cotopaxi el 21/10/2022 visto en microscopio binocular (fotos: Benjamin Bernard, IG-EPN). A1: fragmento accidental gris; A2: fragmento accidental hidrotermal con pirita; A3: fragmento accidental rojizo oxidado; J1: fragmento juvenil oscuro; J2: fragmento juvenil gris; J3: fragmento juvenil miel.


Anomalías térmicas satelitales
Hasta el momento los sistemas satelitales MIROVA y FIRMS no han detectado anomalías térmicas en el volcán Cotopaxi. En la imagen de infrarrojo de Sentinel-2 del 23/10/2022 se observa un pequeño punto caliente en el cráter debajo de una pequeña emisión de gas (Fig. 10). Este punto caliente ha sido observado de manera repetitiva desde 2015. Sin embargo, es la primera vez que se le observa desde el 12/11/2020.

Informe Volcánico Especial Cotopaxi No. 2022-001
Figura 10. Imagen satélite Sentinel 2 (Bandas visible 12, 11, 8) del punto caliente en el cráter del Cotopaxi del 23/10/2022 (fuente: Sentinelhub Playground).


Mediante el monitoreo térmico aéreo se pudo constatar que los campos fumarólicos loca-lizados al exterior del cráter se encuentran activos y presentan temperaturas similares a las de años anteriores (post 2015), con valores máximos de 40°C (Fig. 11). Por otro lado, el conducto presenta anomalías térmicas tanto en las paredes como en la base del mismo, de las cuales no se puede estimar la temperatura real debido a la gran cantidad de gases que son emitidos continuamente.

Informe Volcánico Especial Cotopaxi No. 2022-001
Figura 11. Imagen térmica-visual aérea del cráter del volcán Cotopaxi desde el noroccidente. Se observa las anomalías térmicas correspondientes a esta zona, en especial la emisión de gases y la pared del conducto.


Desgasificación y medidas de dióxido de azufre (SO2)
Luego de la fase eruptiva de 2015, el volcán Cotopaxi continuó con la emanación de gases volcánicos (por ejemplo, SO2: dióxido de azufre, CO2: dióxido de carbono H2S: ácido sulfhídrico) y vapor de agua. La red de DOAS del IGEPN es capaz de medir únicamente los flujos de SO2. En algunas ocasiones, estas emisiones (flujo máximo diario) se intensificaron debido a la influencia de la velocidad del viento en el cálculo del flujo y por lo tanto se observa un patrón de variación estacional con mayores valores en los meses de verano que presentan vientos de altas velocidades (Fig. 12). Estas mediciones son procesadas y evaluadas diariamente y son reportadas en los informes volcánicos correspondientes.

Informe Volcánico Especial Cotopaxi No. 2022-001
Figura 12. Flujo de dióxido de azufre (SO2) diario registrado en las 4 estaciones del volcán Cotopaxi (Refugio Norte, Refugio Sur, Cami y San Joaquín). Nótese los picos de flujo correlacionados con las épocas del año con mayor velocidad del viento (mayo – septiembre/año) (Elaborado por: M. Almeida).


Luego del reporte de caída de ceniza en la zona del Refugio José Rivas (21/Oct/2022) se realizaron travesías con un instrumento móvil DOAS (instrumento para medir flujo de SO2), que funciona bajo el mismo principio de las estaciones permanentes, pero que puede ser transportado en un auto siguiendo la columna de emisión. Previo al 21 de octubre de 2022, no era posible registrar valores de flujo utilizando este instrumento, sin embargo, luego de este episodio, la pluma pudo ser detectada en el tramo de la vía Panamericana E35, desde el sector Tiopullo, entrada occidental del Parque Nacional Cotopaxi (Caspi), hasta la zona de la Laguna de Limpiopungo (dentro del PNC); confirmando la presencia de este gas en cantidades considerables (> 1580 ton/d), cerca al volcán y un poco más disperso sobre la Panamericana, como se observa en la figura 13 .

Informe Volcánico Especial Cotopaxi No. 2022-001
Figura 13. Flujo de SO2 medido utilizando el instrumento Móvil DOAS el 22 de octubre de 2022 (Elaborado por: M. Almeida).


De igual forma, el satélite pudo detectar estas emisiones del gas en la atmósfera, con anomalías puntuales sobre el volcán. Sin embargo, en este método es difícil discriminar la fuente del gas, en particular en nuestro país, donde dos volcanes más lo emiten de manera diaria (Reventador y Sangay), y, por consiguiente, la anomalía fue más evidente entre los días 20 a 21 y 22 a 23 de octubre (Fig. 14). Desafortunadamente este método no funciona como un precursor, ya que sus datos son obtenidos con uno o dos días de diferencia desde su captura.

Informe Volcánico Especial Cotopaxi No. 2022-001
Figura 14. Masa de SO2 presente en la atmósfera sobre el volcán Cotopaxi (estrella amarilla). Los datos son obtenidos en un intervalo de tiempo de 24 horas, por ende, no constituyen un parámetro obtenido a tiempo real (Base Google Engine Code Editor, Script: C. Laverde-SGC. Elaborado por: M. Almeida).


Finalmente, durante los dos sobrevuelos llevados a cabo entre el 26 y 27 de octubre, se pudo utilizar un equipo multiGAS (equipo para medir concentración de gases). El equipo multiGAS permitió medir las concentraciones de CO2, SO2 y H2S en la pluma de gas volcánico (Fig. 15). Como resultado, las razones obtenidas de SO2/H2S están alrededor de 4, mientras que las de CO2/SO2 están entre 2 y 3, siendo ligeramente mayores a las obtenidas en 2015 durante la última erupción del volcán. Estos valores indican un aporte magmático para el gas emitido por el volcán Cotopaxi.

La emisión de vapor de agua y otros gases volcánicos como el CO2, SO2 y H2S, se visualiza continuamente en los últimos días indicando un incremento con respecto a lo observado en los meses pasados.

Informe Volcánico Especial Cotopaxi No. 2022-001
Figura 15. Fotografía de la columna de gas medida durante el sobrevuelo del 27 de octubre, en recuadro se pueden observar los picos de los gases volcánicos (CO2, SO2) detectados (Foto: M. Almeida – IG EPN).



Interpretación de datos

En base a la información disponible, se concluye que el volcán Cotopaxi presentó una actividad eruptiva muy pequeña con un índice de explosividad volcánica (VEI) inferior a 1. El análisis conjunto de los diferentes datos de vigilancia muestra que la actividad reciente del Cotopaxi está provocada por la presencia de magma en el conducto volcánico, el cual interactúa con el sistema hidrotermal del volcán. Sin embargo, hasta el momento no hay evidencia de un ingreso de un mayor volumen de magma hacia el sistema.

Los datos de monitoreo obtenidos desde el 21 hasta el 28 de octubre indican una diminución paulatina de la actividad superficial caracterizada mayormente por columnas de gases y vapor de agua alcanzando hasta 1000 m sobre el cráter. Al momento la actividad interna no muestra un cambio significativo. La sismicidad sigue dominada por pequeños sismos de tipo LP; no hay deformación detectable en los flancos y los gases magmáticos, si bien están presentes, se encuentran en niveles moderados. No hay evidencia todavía de un cambio significativo en el comportamiento del volcán Cotopaxi.

 

Escenarios eruptivos

En base a los parámetros de vigilancia volcánica se propone dos escenarios principales, en orden de probabilidad:

1) La emisión de ceniza del 21 de octubre de 2022 correspondería a un evento aislado, similar a otros menores durante estos últimos 7 años, por ejemplo el del 27/11/2021. Este tipo de eventos puede repetirse en el corto y mediano plazo (días a semanas), sin mostrar signos precursores. En este escenario no se espería actividad superficial mayor a corto plazo.

2) La emisión de ceniza del 21 de octubre de 2022 correspondería al inicio de un periodo eruptivo, relativamente equivalente a la actividad del 14/08/2015. Al momento la incertidumbre es demasiado alta para estimar el tamaño de este posible periodo eruptivo, así como la velocidad de los cambios que el volcán podría experimentar. Es importante destacar que la presencia del magma en el conducto y la desgasificación indican un sistema abierto. Bajo estas condiciones los signos premonitores de eventos eruptivos son muy sutiles e incluso inexistentes, limitando la anticipación o pronóstico de eventos mayores.

Estos escenarios podrán ser cambiados de acuerdo a la evolución de los parámetros que se vigila en el volcán
El IG-EPN se mantiene pendiente de lo que pasa en el volcán, basado en la experiencia de las erupciones pasadas (Pichincha, Tungurahua, Cotopaxi) y presentes (Reventador, Sangay).


Elaborado por: P. Mothes, B. Bernard, S. Hidalgo, M. Almeida, S. Hernández, M. Córdova, F. Naranjo, J. Salgado, S. Vallejo.
Instituto Geofísico
Escuela Politécnica Nacional

El día 24 de octubre del presente año, un grupo de técnicos del Instituto Geofísico de la Escuela Politécnica Nacional (IGEPN) realizaron un recorrido por las quebradas del flanco nororiental del volcán Cotopaxi.

El objetivo de este trabajo fue realizar una inspección y verificación en los drenajes nororientales del volcán. Se verificó que no existieron evidencias de lahares secundarios que hayan descendido hasta la zona baja del volcán por estas quebradas o hacia las afluentes del río Pita que se encuentra en esta dirección.

Campaña de vigilancia de lahares en las quebradas ubicadas en el flanco nororiental del volcán Cotopaxi
Figura 1: Quebrada de Jatabamba al nororiente del volcán Cotopaxi, sin evidencias de descenso de lahares. (Fotografía: J. Salgado, IGEPN).


Durante el recorrido también se verificó el correcto funcionamiento de uno de los puntos de monitoreo instalados en este flanco del volcán. La estación visitada fue VC1, una de las primeras estaciones de vigilancia instaladas en el volcán Cotopaxi.

Este punto de monitoreo multiparamétrico cuenta con equipos de vigilancia sísmica, de deformación, de gases y de detección de lahares.

Un grupo de periodistas acompañaron a los técnicos del IGEPN y fueron partícipes de estos trabajos. Adicionalmente, se brindó explicaciones acerca de la vigilancia del volcán y de los equipos con los que cuenta la red de monitoreo.

Campaña de vigilancia de lahares en las quebradas ubicadas en el flanco nororiental del volcán Cotopaxi
Figura 2: Explicaciones de los técnicos a los miembros de la prensa, acerca de la vigilancia del volcán Cotopaxi. (Fotografías: M. Córdova, IGEPN).


D. García, M. Córdova, J. Salgado
Instituto Geofísico
Escuela Politécnica Nacional