Noticias

Noticias

Subcategorías

Sismos

Sismos

Uno de sus objetivos fundamentales es el monitoreo sísmico permanente de la actividad de origen tectónico y volcánico del territorio nacional.

Ver artículos...
Volcanes

Volcanes

Los volcanes activos son observados a través de diversas tecnologías.

Ver artículos...
Instrumentos

Instrumentos

La tecnología comprende un conjunto de teorías y técnicas que permiten el aprovechamiento práctico del conocimiento científico. No es de sorprenderse que a diario aparezcan nuevas técnicas y revolucionarias teorías que permitan que la tecnología avance a pasos agigantados, facilitando procesos y resolviendo problemas dentro de diversas áreas del quehacer de la comunidad en general.


Desde su creación, el IG ha visto la necesidad de utilizar instrumentos que le permitan realizar una precisa vigilancia tanto en sísmica como en varios otros parámetros relacionados al vulcanismo.

Ver artículos...

Los ingenieros Darío García y Diego Acosta, técnicos del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN), realizaron una visita a las estaciones de vigilancia de Lahares AFM, ubicadas en los flancos del volcán Tungurahua. Los lahares son flujos de lodo y escombros que se generan por la movilización de material expulsado por el volcán junto con agua proveniente de lluvias o del derretimiento del casquete glaciar cuando es el caso. Los técnicos visitaron varias quebradas importantes alrededor del coloso, con el objetivo de revisar sus instrumentos y verificar el estado de estos. En las figuras 1 y 2 se observan algunos de los instrumentos.

Mantenimiento red de detectores de lahares volcán Tungurahua AFM (Acoustic Flow Monitor)
Fig. 1. Instrumentos instalados en las quebradas en los sectores de Ulba, Pondoa y Bilbao, en el volcán Tungurahua. (D. García, D. Acosta).


El propósito de las estaciones de monitoreo que cuentan con instrumentos AFM (Acoustic Flow Monitor) es detectar flujos que transitan por las quebradas acarreando material que puede resultar peligroso para la población que habita en la zona de influencia de las quebradas. Los instrumentos se encuentran instalados bastante cerca a la orilla de las quebradas y ríos; están programados para enviar un registro periódico de la vibración alrededor de la quebrada, discriminando el paso de un lahar. Además, pueden enviar alertas, de manera que el personal que se encuentra en el Centro de vigilancia volcánica (Centro TERRAS), del IG-EPN, pueda informar de manera oportuna a las autoridades e instituciones pertinentes en la seguridad ciudadana.

Mantenimiento red de detectores de lahares volcán Tungurahua AFM (Acoustic Flow Monitor)
Fig. 2. Estaciones de vigilancia de lahares AFM en las quebradas en los sectores de Ulba, Pondoa y Bilbao del volcán Tungurahua.


El trabajo consistió, principalmente, en la revisión de los sistemas de alimentación y de transmisión de datos, además de la calibración de los equipos. Las estaciones de vigilancia volcánica utilizan energía fotovoltaica para su funcionamiento, y cuentan con radio enlaces que permiten transmitir la información en tiempo real hacia el Centro TERRAS. El buen funcionamiento de estos instrumentos tiene una alta importancia, sobre todo en la época de lluvias, ya que todavía existe material depositado en la zona alta del volcán Tungurahua y se pueden generar lahares.

El personal técnico del IG-EPN realiza el mantenimiento periódico de la instrumentación de vigilancia volcánica. Sin embargo, solicitamos a la población, principalmente en los sectores de influencia de las quebradas del volcán Tungurahua, que se mantenga informada a través de los canales oficiales de información.

Cabe destacar que el Instituto Geofísico posee una red de vigilancia estratégicamente instalada en los volcanes del país, con el fin de alertar oportunamente ante amenazas volcánicas y se mantiene monitoreando permanentemente la actividad volcánica en territorio continental y las islas Galápagos.


D. García, D. Acosta
Instituto Geofísico
Escuela Politécnica Nacional

Miembros del Área de Vulcanología del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) realizaron trabajos de campo en el Parque Nacional Llanganates, sector de San José de Poaló provincia de Tungurahua del 19 al 21 de marzo de 2025.

Trabajos geológicos en el Parque Nacional Llanganates (provincia de Tungurahua)
Figura 1. Mapa Turístico de Conservación del Parque Nacional Llanganates. Tomado del Ministerio del Ambiente y Transición Ecológica.


El objetivo principal de esta expedición fue analizar la morfología y caracterizar los afloramientos accesibles de depósitos volcánicos en la zona, con la finalidad de investigar la actividad volcánica más reciente, que no ha sido detallada en la bibliografía.

Trabajos geológicos en el Parque Nacional Llanganates (provincia de Tungurahua)
Figura 2. Vista al SW del Cerro Shinuata. Fotografía: M. Córdova/IG-EPN.


Trabajos geológicos en el Parque Nacional Llanganates (provincia de Tungurahua)
Figura 3. Coleccionando partículas de pómez en las orillas de la cocha, Carrera Larga. Fotografía: P. Mothes/IG-EPN.


Trabajos geológicos en el Parque Nacional Llanganates (provincia de Tungurahua)
Figura 4. Miembros del IG-EPN. Se estima que la elevación en medio campo es la fuente volcánica del depósito Flujo Piroclástico “Talatag”. Lo mismo que aflore en las orillas del rio Talatag. Fotografía: A. Chiluisa y P. Mothes/IG-EPN.


Durante el trabajo de campo, se recolectaron muestras de distintos materiales volcánicos, incluyendo flujos piroclásticos, pómez, capas de ceniza y lavas. Estos materiales serán sometidos a análisis detallados para determinar su composición, distribución y posible origen, así como su relación con los magmas provenientes de centros eruptivos cercanos a la Caldera de Chalupas.

Los resultados de esta investigación permitirán identificar las características específicas de los depósitos volcánicos, establecer sus fuentes de origen más probables y analizar su vínculo con los centros volcánicos de la región. Además, aportarán información valiosa sobre la historia eruptiva de la zona, contribuyendo al conocimiento geológico y vulcanológico del área.

Trabajos geológicos en el Parque Nacional Llanganates (provincia de Tungurahua)
Figura 5. Recolección de muestras de pómez del flujo piroclástico “Talatag”, de hasta 30 cm de diámetro, cuya matriz presenta pocos líticos. Fotografía: A. Chiluisa/IG-EPN.


Trabajos geológicos en el Parque Nacional Llanganates (provincia de Tungurahua)
Figura 6. Afloramiento de la Ignimbrita de Chalupas, con presencia de líticos de color negro, sector Valle Hermoso. Fotografías: P. Mothes /IG-EPN.


Este trabajo se desarrolló en el marco del Proyecto de Investigación PIGR 23-02 del Vicerrectorado de Investigación, Innovación y Vinculación de la Escuela Politécnica Nacional, con la participación de la MSc. Patricia Mothes, directora del proyecto, el MSc. Marco Córdova y la Ing. Ana Chiluisa.


A. Chiluisa, P. Mothes, M. Córdova
Instituto Geofísico
Escuela Politécnica Nacional

Gracias al apoyo logístico y colaboración del MAATE y el Centro de Turismo de Comunitario (CTC) Lago Verde Quilotoa, un grupo de técnicos del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) realizó una campaña de mediciones de CO2 difuso (dióxido de carbono) y muestreo de aguas en la Laguna del Quilotoa el 19 de marzo de 2025.

Mediciones de CO2 difuso y trabajos geológicos en Quilotoa
Figura 1.- Laguna del Quilotoa vista desde la parte superior, borde occidental 19/03/2025 (Foto: D. Sierra/IG-EPN)


Este tipo de medidas se llevan a cabo en Quilotoa desde julio de 2024, pero se han efectuado en otros volcanes como Cuicocha desde el año 2011. La ejecución de esta campaña es parte del Proyecto de Investigación (PIGR 22-02) correspondiente al Estudio Multidisciplinario de Lagos Cratéricos, un proyecto financiado por el Vicerrectorado de Investigación de la EPN; y del Joven Equipo ECLAIR del IRD (Instituto Francés para el Desarrollo): https://www.facebook.com/share/p/GCb6uew2DTizmGiz/?mibextid=oFDknk .

Mediciones de CO2 difuso y trabajos geológicos en Quilotoa
Figura 2.- Medición de CO2 difuso en la superficie de la laguna con el método de la campana de acumulación (Fotos: D. Sierra, S. Hidalgo/IG-EPN)


Para llevar a cabo las mediciones de CO2, se utiliza el “método de la cámara de acumulación”, en el cual se usa una campana de aluminio, acoplada a un sensor tipo LI-COR® para determinar el flujo de CO2. Con este instrumento, se realiza un muestreo representativo alrededor de toda la laguna, y finalmente mediante métodos geoestadísticos se elabora un mapa de emisiones de CO2 con el cual se puede obtener un flujo total emitido.

Durante esta campaña los técnicos llevaron a cabo un total de 75 mediciones. Al momento de publicación del presente, los datos están siendo procesados para la emisión del informe correspondiente.

Mediciones de CO2 difuso y trabajos geológicos en Quilotoa
Figura 3.- Medición de parámetros físico-químicos y muestreo de fuentes termales en Casa Quemada y Padre Rumi (Fotos: D. Narváez /EPN; S. Hidalgo/IG-EPN)


Adicionalmente se realizó el muestreo del agua de la Laguna, así como también en las aguas termales periféricas del volcán como son las termas de: Casa Quemada, Cashapata, KununYaku, Chilca Achi y Padre Rumi. Este tipo de muestreos se realizan en todos los sistemas hidrotermales del Ecuador como método de vigilancia volcánica. Las muestras serán analizadas en el Centro de Investigación y Control Ambiental (CICAM) de la EPN, para la determinación de elementos mayoritarios.

Mediciones de CO2 difuso y trabajos geológicos en Quilotoa
Figura 4.- Trabajos Geológicos en el Quilotoa para entender mejor su historia eruptiva. 20/03/2025 (Fotos: D. Sierra/IG-EPN)


El proyecto de Investigación Multidisciplinario de Lagos Cratéricos incluye también la mejora del conocimiento de la geología del Volcán. En este sentido los técnicos del IG-EPN trabajaron junto de técnicos franceses del IRD, en labores de levantamiento geológico en Quilotoa y zonas aledañas. Los técnicos recorrieron quebradas, revisaron afloramientos al borde de los caminos y recolectaron muestras para realizar dataciones y análisis químicos.

El Quilotoa es un volcán que no se ha estudiado a profundidad, por ello no conocemos todos los detalles de su historia eruptiva. Sin embargo, se sabe que su última gran erupción fue en el siglo XII, y que dejó potentes depósitos de material piroclástico que se encuentra en los valles y planicies aledañas. Dada su reciente actividad hace apenas 800 años, cuando nuestros antepasados indígenas ya habitaban la zona, Quilotoa es catalogado por el IG-EPN como un volcán Potencialmente Activo.

Otro dato poco conocido sobre este volcán es que se tienen reportes de que, en el año de 1797, el gran sismo de Riobamba provocó una fuerte agitación en la laguna del Quilotoa, liberando grandes cantidades de gases que asfixiaron a las cabezas de ganado que se encontraban pastando en el interior del cráter.

Los resultados de estos proyectos de investigación nos permitirán tener un mejor entendimiento de las dinámicas eruptivas del volcán para un eventual caso de reactivación, así como también entender el comportamiento del sistema hidrotermal y la desgasificación en la laguna, esto con miras a una mejor definición y por tanto a una reducción de las potenciales amenazas y riesgos asociados al volcán.


D. Sierra, S. Hidalgo
Instituto Geofísico
Escuela Politécnica Nacional

Entre el 10 y 14 de marzo de 2025, un equipo de técnico del área técnica del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) realizó trabajos de mantenimiento y mejoramiento en la estación multiparamétrica SAG1 – Domono Bajo, ubicada en la provincia de Morona Santiago. Este sitio es clave para el monitoreo del Volcán Sangay y la detección temprana de lahares en el río Upano.

La estación cuenta con un sismómetro de banda ancha, el cual permite registrar la actividad sísmica asociada a la dinámica interna del volcán. Además, la estación está equipada con un arreglo de 5 sensores de infrasonido Chaparral, dispuestos en diferentes ángulos para mejorar la detección y caracterización de señales acústicas de baja frecuencia. El infrasonido es una técnica clave para identificar explosiones volcánicas, emisiones de gases y colapsos de material, permitiendo un monitoreo en tiempo real del Volcán Sangay y la emisión de alertas tempranas.

El monitoreo de lahares en el río Upano también se apoya en estos sensores de infrasonido que permite detectar flujos de lodo y escombros generados por la actividad del Sangay y las intensas lluvias en la región. Estos eventos pueden afectar poblaciones cercanas, infraestructura vial y puentes. Gracias a la instalación y mantenimiento de sensores de infrasonido en la estación SAG1, es posible identificar la ocurrencia de los lahares con anticipación, mejorando la capacidad de respuesta ante emergencias.

Mejoramiento de la infraestructura de la estación multiparamétrica SAG1 – Domono Bajo para la vigilancia del volcán Sangay
Figura 1. Equipo de técnicos del IG-EPN durante los trabajos de mantenimiento y mejoramiento de la estación multiparamétrica SAG1 – Domono Bajo. En la imagen se observa las bases de hormigón y las estructuras metálicas para los sensores de infrasonido. De izquierda a derecha: Javier Pozo, Christian Cisneros, Carlos Macías, Roberto Toapanta.


Mejoramiento de la infraestructura de la estación multiparamétrica SAG1 – Domono Bajo para la vigilancia del volcán Sangay
Figura 2. El Sr. Patricio Anank colaborando en los trabajos de adecuación de la estación multiparamétrica SAG1.


Mejoramiento de la infraestructura de la estación multiparamétrica SAG1 – Domono Bajo para la vigilancia del volcán Sangay
Figura 3. Trabajos de mantenimiento en la estación multiparamétrica SAG1 – Domono Bajo. En la imagen, técnicos del IG-EPN realizan labores de inspección y ajuste en el sistema de suministro de energía en base a sistemas fotovoltaicos y la supervisión de la instrumentación de monitoreo sísmico e infrasonido.


Mejoramiento de la infraestructura de la estación multiparamétrica SAG1 – Domono Bajo para la vigilancia del volcán Sangay
Figura 4. Técnicos del IG-EPN realizan la instalación de las cámaras metálicas para la atenuación de ruido para los sensores de infrasonido.


Mejoramiento de la infraestructura de la estación multiparamétrica SAG1 – Domono Bajo para la vigilancia del volcán Sangay
Figura 5. Vista final de la estación multiparamétrica SAG1 – Domono Bajo tras los trabajos de mantenimiento y mejoramiento. Se observa la instalación de los sensores de infrasonido con su respectiva protección, garantizando la operatividad del monitoreo del Volcán Sangay y la detección de lahares en el río Upano.


Mejoramiento de la infraestructura de la estación multiparamétrica SAG1 – Domono Bajo para la vigilancia del volcán Sangay
Figura 6. Monitoreo en tiempo real de las señales registradas por los cinco sensores de infrasonido instalados en la estación multiparamétrica SAG1. Durante las pruebas del sistema, se detectó una explosión en el Volcán Sangay, confirmando la efectividad del arreglo de sensores para la vigilancia de su actividad eruptiva. La plataforma de Nanometrics muestra las formas de onda en distintos canales, lo que permite analizar la dinámica de las emisiones volcánicas y mejorar la capacidad de alerta temprana ante eventos de gran impacto.


Mejoramiento de la infraestructura de la estación multiparamétrica SAG1 – Domono Bajo para la vigilancia del volcán Sangay
Figura 7. Uno de los cinco nodos de infrasonido instalados. Estos sensores, dispuestos en diferentes ángulos, permiten detectar señales acústicas de baja frecuencia generadas por la actividad eruptiva del Volcán Sangay y la ocurrencia de lahares en el río Upano.


Mejoramiento de la infraestructura de la estación multiparamétrica SAG1 – Domono Bajo para la vigilancia del volcán Sangay
Figura 8. Revisión del estado del sensor, nivelación y centrado.


Mejoramiento de la infraestructura de la estación multiparamétrica SAG1 – Domono Bajo para la vigilancia del volcán Sangay
Figura 9. Equipo del IG-EPN junto al Sr. Juan Francisco Torres, propietario del sitio donde se encuentra la estación multiparamétrica SAG1 – Domono Bajo. La colaboración con la comunidad es fundamental para el mantenimiento y operación del sistema de monitoreo del Volcán Sangay y la detección de lahares en el río Upano.


El Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) expresa su más sincero agradecimiento al Sr. Juan Francisco Torres, Dr. Javier Mena Trujillo, Sr. Patricio Anank y Sr. Rómulo Rodríguez, cuyo invaluable apoyo y colaboración fueron fundamentales para la ejecución exitosa de los trabajos en la estación de monitoreo SAG1 – Domono Bajo. Su compromiso y disposición permitiendo alcanzar los objetivos planteados y fortalecer el monitoreo del Volcán Sangay y la detección temprana de lahares en el río Upano. Gracias a este esfuerzo conjunto, se refuerza la capacidad de alerta temprana y se mejora la resiliencia ante eventos volcánicos de la zona.


R. Toapanta, C. Cisneros, C. Macías
Instituto Geofísico
Escuela Politécnica Nacional

Colaboración entre el IG-EPN y la University College de Londres (UCL)

En la semana del 25 al 28 de febrero de 2025, gracias a la colaboración de la investigadora, Dra. Elizabeth Gaunt de la University College de Londres (UCL), el personal de las áreas de Vulcanología e Instrumentación del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN), realizó tareas de: vigilancia, muestreo de rocas, y apoyo logístico durante las labores de instalación de una nueva estación de monitoreo en el volcán Sangay.

Trabajos de muestreo e instalación de una nueva estación de vigilancia en el volcán Sangay
Figura 1. Vista del volcán Sangay desde la ciudad de Macas, provincia de Morona Santiago. (28/02/2025). Fotografía: E. Gaunt/UCL.


El volcán Sangay es uno de los volcanes más activos del Frente Volcánico Ecuatoriano. Con una altura aproximada de 5230 m snm, es también uno de los volcanes más altos de los Andes. Desde mayo de 2019 hasta el presente, este volcán experimenta uno de sus períodos eruptivos más importantes, causando diferentes tipos de afectaciones a nivel local y regional, debido a la caída de ceniza y generación de lahares secundarios producto de la removilización del material depositado en las diferentes erupciones, por efecto de las lluvias.

Gracias a la disponibilidad de un helicóptero, se efectuó una inspección a los drenajes Río Upano y Río Volcán, con el embalse (represamiento) formado en los últimos años. Las fotografías de la figura 2, el represamiento sobre el río Upano, mismo que ha ido acumulando sedimentos disminuyendo su profundidad (Figura 2.A); el segundo cuadro muestra en el drenaje del río Volcán, diferentes depósitos asociados con la ocurrencia de lahares (Figura 2.B). Los flancos del volcán Sangay (Figura 2.C) muestran las zonas bajas del volcán, erosionadas por los impactos de los fenómenos (nubes ardientes, proyectiles de roca) asociados a la actividad explosiva registrada durante el proceso eruptivo desde 2019 hasta la actualidad.

Trabajos de muestreo e instalación de una nueva estación de vigilancia en el volcán Sangay
Figura 2. A. Vista de frente al embalse del Río Upano en la conjunción con el Río Volcán. B. Zona alta del cauce del Río Volcán, con terrazas formadas por el descenso de flujos de lodo. C. Vista del flanco suroriental del volcán Sangay, donde se distingue la regeneración de vegetación luego de verse afectada por actividad explosiva intensa de 2021, efectos del proceso eruptivo ocurrido a lo largo del último período eruptivo desde 2019 al presente. Fotografías: a) F. Naranjo, b) y c). M. Almeida.


Las muestras de rocas más relevantes se obtuvieron principalmente en las terrazas ubicadas en las cabeceras del Río Volcán (Figura 3.a y 3.b) y en el frente del flujo de lava de 2021 (Figura 3.c). Las muestras recogidas se enviarán al Reino Unido (UK), en donde se realizarán los análisis de la geoquímica y sus propiedades físicas para determinar las condiciones a las que se encontraba el sistema volcánico en profundidad.

Trabajos de muestreo e instalación de una nueva estación de vigilancia en el volcán Sangay
Figura 3. Equipo de muestreo: E. Figura 3. A. E. Gaunt y M. Almeida, trabajando en las terrazas de la cabecera del Río Volcán (a y b) y sobre el flujo de lava generada en 2021(c), siendo este evento, de suma importancia para este trabajo. Fotografías: a) y b) E. Gaunt. c) M. Almeida.


El uso de las cámaras infrarrojas sirve para visibilizar los productos calientes emitidos por el volcán, tales como: flujos de lava, rocas incandescentes, nubes ardientes o lahares calientes. En este caso, la figura 4 muestra en el recuadro de color amarillo, la identificación de rocas calientes que se desprenden de un flujo de lava activo. Todos estos productos descienden por la quebrada suroriental del volcán.

Trabajos de muestreo e instalación de una nueva estación de vigilancia en el volcán Sangay
Figura 4. Fotografía del flanco suroriental del volcán Sangay. En el recuadro amarillo se muestra una imagen obtenida con cámara infrarroja, que evidencia productos calientes en la quebrada suroriental.


Las labores de instalación de la nueva estación de la red de vigilancia incluyeron el traslado de varios equipos hacia una nueva estación a 12 km al suroccidente del volcán Sangay. Debido al peso de los equipos y lo remoto del sitio, el transporte aéreo resulta imprescindible.

Trabajos de muestreo e instalación de una nueva estación de vigilancia en el volcán Sangay
Figura 5. Preparación de equipos para el envío (a y b) y posterior entrega aérea de la carga en el sitio de la nueva estación de monitoreo del volcán Sangay (c). Fotografías: a) y b) F. Naranjo, c) D. Acosta.


Los trabajos realizados en el volcán Sangay son extremadamente complejos y requieren de personal entrenado y calificado, bajo estrictas normas de seguridad.

Trabajos de muestreo e instalación de una nueva estación de vigilancia en el volcán Sangay
Figura 6. Personal que integró la comisión: A. En las instalaciones del IGEPN, Quito. De izquierda a derecha: M. Almeida, F. Vásconez, E. Gaunt, F. Naranjo, F. Mejía, D. García, L. Vélez y D. Acosta. B. En Macas, junto con la tripulación del helicóptero de la empresa Ecocopter S.A., bajo el mando del Capitán Sherman Díaz.


El Instituto Geofísico de la Escuela Politécnica Nacional agradece el gran aporte de la Dr. Elizabeth Gaunt por las facilidades brindadas en el uso de la aeronave que permitió alcanzar los objetivos y cumplir las labores efectuadas en el volcán Sangay.

 

F. Naranjo, M. Almeida
Instituto Geofísico
Escuela Politécnica Nacional

E. Gaunt
University College de Londres UCL

Página 1 de 325

Sismos en tiempo real en tu celular
Únete a nuestro canal de Telegram SismosIGEPN