Cerca del mediodía del domingo 23 de octubre de 2022, se registró una señal de alta frecuencia de pequeña amplitud en las estaciones sísmicas ubicadas en el flanco norte del volcán, relacionada con el descenso de flujos de lodo (lahares secundarios) pequeños. El día lunes 24 de octubre, técnicos del Instituto Geofísico inspeccionaron los drenajes ubicados en los flancos norte y nororiental del volcán, no se encontraron evidencias de lahares secundarios que hayan descendido hasta la zona baja del volcán por estas quebradas. Suponemos que las huellas quedaron más arriba de estos flancos. Es probable que estos flujos se originaron por un derretimiento limitado de la superficie del glaciar, por la presencia de un leve manto de ceniza negra y de las lluvias presentes en la zona.
Desde la noche del domingo hasta el día de hoy, miércoles 26 de octubre, la sismicidad se ha mantenido en niveles moderados y ha disminuido progresivamente desde 187 a 78 sismos por día.
Los gases emitidos desde el cráter están en niveles moderados y tampoco hay indicios de deformación en los flancos del edificio. Se debe enfatizar que la nubosidad en la zona del volcán ha sido permanente, excepto por breves momentos en las mañanas.
Durante la mañana de hoy, en la cámara de Sincholagua (al NNE del volcán) se observó una débil columna blanca de gases y vapor de agua que alcanzó 200 msnc.
En el sismograma se observa el registro sísmico de la estación BREF donde se observa principalmente la ocurrencia de sismos locales de tipo LP (asociados al movimiento de fluidos) y menos de tipo VT (fracturamiento de rocas); adicionalmente, se observan algunos sismos regionales (marcados en naranja).
P. Mothes, M. Segovia
Corrector de Estilo: G. Pino
Instituto Geofísico
Escuela Politécnica Nacional
Entre el 26 de septiembre y el 12 octubre de 2022, técnicos del Instituto Geofísico trabajaron en conjunto con científicos estadounidenses del USAID-USGS (USAID: Agencia para el desarrollo Internacional de los Estados Unidos; USGS: Servicio Geológico de los Estados Unidos).
Angie Diefenbach del Programa de Asistencia para Desastres Volcánicos (VDAP) y Matt Patrick del Observatorio Volcanológico de Hawaii (HVO) compartieron sus experiencias en crisis volcánicas, en especial con las actividades desarrolladas durante la erupción del volcán Kīlauea en 2018.
Dentro de las tareas de vigilancia visual y térmica que el IG-EPN realiza, el VDAP donó nuevas cámaras de rango visible temporales y permanentes, las cuales permiten incrementar las capacidades técnicas para un eficiente monitoreo volcánico. Para ello se instalaron las cámaras en los volcanes Sangay y El Reventador.
Dentro de los trabajos conjuntos realizados en Macas por parte de los funcionarios del IG-EPN, USAID-USGS y ECU911 Macas (Fig. 1. Izquierda), fue posible instalar una cámara de vigilancia volcánica localizada a 37 km de distancia del volcán Sangay (Fig. 1, Derecha). El apoyo brindado por el ECU911 Macas fue clave para que el IG-EPN pueda contar con las imágenes en tiempo real.
Si quieres observar la actividad del volcán Sangay, visita el siguiente link: https://www.igepn.edu.ec/sangay-camaras.
En el volcán El Reventador se realizaron varios experimentos con las cámaras visibles y térmicas que permitieron identificar con mayor detalle la actividad superficial observada en el volcán (Fig. 2).
Todas las tareas realizadas durante las visitas a los volcanes permitieron intercambiar experiencias sobre las diferentes metodologías de trabajo empleadas, conocer sus dinámicas eruptivas, su estado actual y sus principales amenazas; esto con el objetivo de desarrollar nuevas propuestas de colaboración interinstitucional.
El Instituto Geofísico de la Escuela Politécnica Nacional agradece esta importante visita del personal del USAID-USGS y la donación realizada. De igual manera, extiende un agradecimiento al personal del ECU911 Macas por su colaboración y logística proporcionada dentro de los trabajos realizados para la vigilancia en el volcán Sangay.
S. Vallejo, M. Almeida, F. Naranjo, I. Tapa
Instituto Geofísico
Escuela Politécnica Nacional
Del 03 al 05 de octubre de 2022, Quito acogió la IV Asamblea de la Comisión Sismológica de América Latina y el Caribe (LACSC). En esta ocasión el Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) fue el anfitrión y organizador.
El día 05 de octubre, en la Tercera Jornada, dentro de la sesión de “Sistemas de Alerta Temprana para Sismos”, el Dr. Gerardo Suárez del Instituto de Geofísica de la Universidad Autónoma de México (UNAM), presentó una ponencia titulada “A retrospective view of the Seismic Early Warning System of Mexico (SASMEX)” o en español “Una visión retrospectiva del Sistema de Alerta Temprana Sísmico de México (SASMEX)”.
El Sistema de Alerta Sísmica Mexicano (SASMEX) es un sistema de sensores sísmicos distribuidos en el centro y la costa oeste de México. Está diseñado para detectar los movimientos sísmicos y emitir una alerta temprana para que la gente que se ubica en zonas distales al epicentro tenga unos segundos/minutos para prepararse para la llegada del sismo (Figura 1).
La ciudad de México está construida sobre depósitos lacustres, es por esto que es muy vulnerable frente a los sismos. La idea principal del sistema de alerta temprana es detectar los sismos que ocurren en la costa oeste o sur del país y emitir una alerta en Ciudad de México (Figura 2), antes de que las ondas sísmicas destructivas lleguen. Esto es posible porque las telecomunicaciones viajan a la velocidad de la luz (es decir su transmisión es prácticamente instantánea), mientras que las ondas sísmicas viajan a velocidades de aproximadamente 6 km/s, la diferencia entre estas dos velocidades permite un tiempo de algunos segundos para que la gente se prepare.
El SASMEX difunde alertas tempranas utilizando altavoces públicos, radios multi-riesgos, estaciones de radio y televisión entre otros. Se estima que aproximadamente 25 millones de personas reciben mensajes de alerta. Es importante aclarar que el sistema SASMEX NO PREDICE LA OCURRENCIA DE LOS SISMOS, únicamente detona una advertencia cuando los sismos ya han ocurrido (Figura 1 & Figura 3).
La práctica aceptada por la población en general es evacuar al sonido de alerta. Esto es útil en escuelas y edificios de poca altura, donde generalmente se entrena a las personas para que evacuen rápidamente. Sin embargo, no resulta eficaz en edificios de gran altura ni en lugares donde se concentra un gran número de personas, en estos casos agacharse, cubrirse y sostenerse en vez de evacuar parece ser la opción más viable (Figura 4).
¿Cuáles son las limitantes del sistema de alerta temprana?
Un buen ejemplo fue el terremoto acaecido en México en septiembre de 2017, que subrayó las condiciones en las que es efectivo el sistema de alerta.
Habiendo entendido cómo funciona, es evidente que la efectividad del sistema disminuye cuanto más cerca estemos de la fuente del sismo. Para el caso de este sismo en particular, el sismo no ocurrió en la costa sino en pleno corazón del país, la fuente era muy cercana a las poblaciones, por lo que en muchos casos la alarma sonó con muy poco o casi ningún tiempo de anticipación (Figura 5).
Mucha gente tiene una equívoca idea de cómo funciona el sistema de alerta temprana, se han acostumbrado a pensar que siempre tendrán aproximadamente un minuto o un minuto y medio para responder, pero lamentablemente no siempre es así. La Dra. Benazir Orihuela de La Escuela Politécnica Federal de Zúrich (ETH), Suiza, mostró un estudio sobre la percepción que tiene la población en general sobre la utilidad del sistema de alerta temprana en diferentes países. Curiosamente y aunque el sistema de alerta mexicano, ha demostrado ser uno de los más efectivos del mundo, tiene una de las más bajas aceptaciones del público, comparado con otros países como Suiza que ni siquiera ha implementado un sistema de alerta temprana (Figura 6).
Dentro de la misma jornada de la asamblea, el Dr. Marino Protti de la Universidad Nacional de Costa Rica (UNA), habló sobre cómo su país ofrece las condiciones apropiadas para la instalación de un sistema de alerta temprano para la capital, pues el conglomerado urbano de San José (capital de Costa Rica), se encuentra a una buena distancia de la zona sismogénica.
¿Cuáles son las perspectivas para nuestro país?
En nuestro país, existen varios proyectos en desarrollo a través de la Agencia de Cooperación Internacional de Japón (JICA) y algunas instituciones del estado, siendo el objetivo fundamental de éstos, disponer de sistemas de alerta temprana para tsunamis. Además actualmente ya existe una red sísmica que nos permite detectar los sismos, calcular su magnitud y localización con bastante exactitud a pocos minutos de haber ocurrido.
Una pregunta que se genera es ¿Se puede implementar un sistema de alerta temprana sísmico en Ecuador? ¿Qué tan útil sería en la práctica? Las fuentes sísmicas asociadas a la subducción en Ecuador (convergencia de Placa de Nazca y Sudamericana), están muy cerca a la costa por lo cual el tiempo para generar una alerta temprana pudiera ser insuficiente. Si pensamos por ejemplo en el Sismo de Magnitud 6 que se registró el 27/03/22 frente a la prov. de Esmeraldas, el tiempo que se tiene para la llegada de las ondas S que son las que producen más daños, es de apenas 8 segundos para Tonsupa; cabe recalcar que la zona cercana será siempre la más afectada. Por otra parte, si consideramos la distancia desde la fuente sísmica hasta otras urbes como Quito el tiempo de alerta aumenta hasta 48 segundos. Sin embargo, dada la distancia a la que Quito se encuentra, es muy poco probable que se produzcan daños importantes en la capital con un sismo de esta magnitud. Un caso similar se da si ponemos como ejemplo otra de las grandes urbes ecuatorianas, Guayaquil, para la cual el tiempo sería de aproximadamente 81 segundos (Figura 7).
La clave para prevenir desastres es estar preparados. El 25 de octubre se realizará el Simulacro Nacional de Tsunami 2022 en todos los cantones del perfil costanero y región Insular del país. ¡Prepárate y participa! Ingresa al siguiente link para obtener información del simulacro: https://www.gestionderiesgos.gob.ec/simulacro/
D. Sierra, M. Segovia.
Instituto Geofísico
Escuela Politécnica Nacional
Desde el 03 al 05 de octubre de 2022, Quito acogió a la IV Asamblea de la Comisión Sismológica de América Latina y el Caribe (LACSC). En esta ocasión el Instituto Geofísico de la Escuela Politécnica Nacional fue el anfitrión y organizador.
El día 05 de octubre, en la Tercera Jornada del evento, dentro de la sesión de “Sistemas de Alerta temprana para sismos” la Msc. Patricia Mothes, Jefa del Área de Vulcanología del IG-EPN realizó una ponencia titulada: “Advances in Real-Time GPS Monitoring of the Nazca/South American Subduction Zone, for Local Tsunami Early-Warning in Ecuador“, o en español: “Avances en el Monitoreo de GPS en Tiempo Real de la Zona de Subducción Nazca/Sudamérica, para la Alerta Temprana Local de Tsunamis en Ecuador”.
La Red Nacional de Geodesia “RENGEO”, operada por el IG-EPN, cuenta con más de 90 estaciones desplegadas por todo el territorio nacional, y fue implementada a partir de 2006. Su misión es tener un control de los desplazamientos de la corteza en el territorio Nacional.
En su artículo Mothes et al. (2018) usaron más de una década de datos geodésicos para determinar las zonas de acoplamiento sísmico en la costa del Ecuador (Fig. 1). El artículo completo fue publicado en el Seismological Research Letters (2018) Volumen 89, de la Seismological Society of America (SSA): https://pubs.geoscienceworld.org/ssa/srl/article-abstract/89/2A/534/528166/Monitoring-the-Earthquake-Cycle-in-the-Northern?redirectedFrom=fulltext
Las zonas de alto acoplamiento se correlacionan con las zonas de ruptura que generan grandes terremotos. La Costa Ecuatoriana es una zona altamente sismogénica, ha presentado sismos importantes en 1906, 1942, 1958 y 1979 y lo más reciente en abril de 2016 (Fig. 1). El sismo de 1906 de magnitud 8.8, es el sismo más fuerte que se ha registrado en la historia de nuestro país. No solo fue altamente destructivo, sino que provocó un tsunami que causó graves inundaciones y varios decesos, sobretodo en la provincia de Esmeraldas.
Si revisamos las localizaciones de los sismos, según en catálogo de eventos magnitud >4 del IG-EPN 2011-2022, notaremos algo muy importante: existen dos áreas de “silencio sísmico” es decir zonas donde la sismicidad ha permanecido ausente durante un periodo de tiempo, nuevamente las zonas se ubican en la costa de Esmeraldas-Nariño (Figura 2).
¿Cuál es la implicación directa de esto? Los datos sugieren una alta posibilidad de ocurrencia en el corto a mediano plazo de un terremoto de magnitud 7.5-8 Mw a lo largo de la costa norte de Ecuador y sur de Colombia. Si bien se tiene una idea del tamaño del sismo que podría ocurrir, no sabemos cuándo, cómo, ni exactamente dónde.
Es por esto que el IG-EPN ha desplegado una red de 10 estaciones GPS que transmiten en tiempo real (Fig. 2), las cuales ayudarán a proporcionar información oportuna sobre los desplazamientos máximos del suelo y, por lo tanto, facilitar la determinación de la magnitud en caso de un futuro terremoto, así como la posible ocurrencia de un tsunami.
Eventos como el LACSC permiten la difusión de la ciencia, facilitan el encuentro cercano de los investigadores de diferentes países y regiones y ayudan a poner en marcha nuevos proyectos. El IG-EPN invierte buena parte de sus recursos en la difusión comunitaria para asegurarse de que las personas conozcan sobre la actividad sísmica y volcánica en nuestro país (Fig. 3).
Las autoridades locales son conscientes de que la ocurrencia de un sismo grande que pueda no solo ser destructivo por sí mismo sino también desencadenar un tsunami, es un peligro latente en la Costa Norte del Ecuador.
Es por esto que el próximo 25 de octubre, el Servicio Nacional de Gestión de Riesgos y Emergencias (SNGRE) desarrollará el Simulacro Nacional de Tsunami 2022, basado en el hipotético escenario de un sismo de magnitud 7.6 frente a la costa fronteriza entre Ecuador y Colombia. El simulacro se realizará simultáneamente en todas las provincias costeras incluidas las Islas Galápagos.
D. Sierra, A. Vásconez, P. Mothes
Instituto Geofísico
Escuela Politécnica Nacional
SISMO EN GUAYAQUIL
El día de hoy, sábado 15 de octubre de 2022 a las 02h39 TL, se registró un sismo de magnitud 5.2 MLv, cuyo epicentro se localizó a unos 10 km al Oeste del centro de Guayaquil, a una profundidad de 40 km.
En la figura 1.a se muestra la localización del evento: Latitud: 2.17° S, Longitud: 79.99° W, Profundidad: 40 Km, que tuvo una magnitud de 5.2 MLv. En la figura 1.b se presenta el mecanismo focal, resultado de la inversión de formas de onda con el método FMNEAR. Este mecanismo junto con la profundidad, nos indica que el evento está relacionado con una fractura en la placa oceánica en subducción bajo el continente.
Hasta la publicación de este informe no se han registrado eventos asociados, sin embargo, no se descarta la posibilidad de que ocurran.
Según el reporte del SNGRE, el evento en cuestión fue sentido ampliamente en la zona epicentral y otras localidades de la provincia de Guayas, así como en las provincias de Chimborazo, Cañar, Bolívar y Azuay, de forma leve a moderada y no hubo reportes de afectaciones.
El Instituto Geofísico se encuentra monitoreando y cualquier novedad será informada.
Jefe T.; Auxiliar T.
SEGOVIA M, MEJÍA M
Colaboradores del Informe
CÓRDOVA A
Instituto Geofísico
Escuela Politécnica Nacional
© 2024 Instituto Geofísico - EPN
Inicio | Escuela Politécnica Nacional | Correo Institucional
Ladrón de Guevara E11-253, Aptdo. 2759 Quito - Ecuador.
Teléfonos: (593-2)2225655 ; (593-2)2225627 Fax: (593-2)2567847