La Comisión de Química de Gases Volcánicos (CCVG, por sus siglas en inglés), es una subcomisión de la Asociación Internacional de Vulcanología y Química del Interior de la Tierra (IAVCEI, por sus siglas en inglés), la cual fue creada a principios de los años 80 con la intención de reunir a los científicos interesados en el estudio de los gases alrededor de todo el mundo con el fin de aportar al conocimiento de los sistemas volcánicos.
El 13er Workshop de Gases tuvo como sede Ecuador en el año 2017 y el IG-EPN fue el anfitrión del evento (https://www.igepn.edu.ec/interactuamos-con-usted/1527-decimo-tercer-taller-internacional-de-gases-volcanicos-ecuador-2017).
Para esta nueva edición el 14to Taller de la CCVG, “Gas Workshop 2022”, fue llevado a cabo en Arequipa - Perú entre el 06 y el 14 de noviembre de 2022. El evento contó con la participación de casi 80 expertos en el área de geoquímica de fluidos volcánicos provenientes de todo el mundo, incluyendo países como Alemania, Argentina, Canadá, Colombia, Costa Rica, Chile, China, Ecuador, España, Estados Unidos, Francia, Singapur, México, Italia, Japón, Portugal, Perú, Rumania, Suiza, Suecia, entre otros.
Dos investigadores del área de vulcanología del Instituto Geofísico de la Escuela Politécnica Nacional asistieron en representación de la institución a este evento. Durante el mismo, se llevaron a cabo ciclos de conferencias donde los técnicos del IG-EPN mostraron sus avances en investigación con gases volcánicos en los volcanes Cotopaxi y Cuicocha.
Además, se realizaron viajes de campo que incluyeron visitas a los volcanes peruanos: Ubinas, Sabancaya, Ticsani, Mini Volcán Logen y al Geyser de Pinchillo, donde los científicos realizaron medidas en paralelo para comparar sus metodologías y calibrar sus equipos. La idea básica de este “Workshop” es reunir a quienes trabajan con gases volcánicos en todo el mundo y estandarizar las metodologías que se usan, de manera que los resultados obtenidos por los diferentes grupos de trabajo sean comparables. Es además una gran oportunidad para buscar oportunidades de trabajo conjunto, proyectos y financiamiento para proyectos vinculados a la vigilancia volcánica.
Finalmente, durante la reunión de cierre del evento, la Dra. Silvana Hidalgo del IG-EPN fue elegida por votación mayoritaria como la nueva co-líder de la CCVG, junto al Dr. Tobías Fischer de la Universidad de Nuevo México, EEUU. Se prevé además que la realización del próximo taller de gases volcánicos se llevará a cabo en Hokkaido-Japón en 2025.
D. Sierra, S Hidalgo.
Instituto Geofísico
Escuela Politécnica Nacional
Entre el 18 y el 20 de septiembre de 2022, técnicos del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) realizaron la recolección de muestras de ceniza y el mantenimiento de la red de cenizómetros ubicados en las comunidades al occidente del volcán Sangay, en la Provincia de Chimborazo (Fig. 1).
Trabajo de campo
El volcán Sangay, ubicado en la provincia de Morona Santiago, es uno de los volcanes más activos del país. Desde 2019 presenta una actividad eruptiva catalogada como de nivel moderado a alto. Han ocurrido constantes emisiones y caídas de ceniza que han afectado ampliamente a comunidades localizadas al Occidente del volcán. La ceniza puede resultar peligrosa para la salud, causando irritación de piel y ojos, así como problemas respiratorios. De igual forma la ceniza ha impactado la agricultura y ganadería. El mantenimiento de los cenizómetros permitió a los técnicos del IG-EPN recolectar muestras de ceniza asociadas a las emisiones ocurridas entre el 12 de septiembre y el 18 de octubre de 2022 (Fig. 2). Durante este periodo se han reportado 158 alertas de dispersión de ceniza poco energéticas (menor a 3000 metros sobre el nivel de cráter), una de las cuales alcanzó hasta 450 km de distancia desde el volcán según los reportes satelitales del Centro de Alertas de Ceniza Volcánica de Washington (Washington VAAC). Estas emisiones de ceniza se dirigieron principalmente hacia el occidente y noroccidente del volcán, sobrepasando la línea costera y provocando caída de ceniza principalmente en la provincia de Chimborazo.
La red de cenizómetros permitió cuantificar la cantidad de ceniza en cada una de las siguientes poblaciones:
Posteriormente, la ceniza recolectada es analizada en el laboratorio del IG-EPN para determinar su contenido, composición y principales características; esto permite obtener información fundamental para una mayor comprensión y evaluación de la amenaza.
Los cenizómetros son recipientes especialmente diseñados para la recolección de muestras de caídas de ceniza. Los datos obtenidos a través de esta red permiten a los técnicos llevar un control periódico de la dispersión y el volumen de ceniza que emiten los volcanes. Además, permiten recolectar muestras no contaminadas que se analizan posteriormente en laboratorio para conocer su composición y, en base a esto, evaluar la actividad de los volcanes en erupción y la peligrosidad de la ceniza volcánica emitida.
Por otra parte, los Observadores Volcánicos de varias comunidades de las parroquias Cebadas y Palmira del cantón Guamote también procedieron a realizar el mantenimiento de cenizómetros y entregar sus respectivos filtros (Fig. 3). En ese sentido, a varios Observadores se les explicó cómo realizar el mantenimiento y la forma de compartir la información recolectada y observaciones a través de la aplicación para celulares App_OV.
El Instituto Geofísico continuará con las campañas de recolección de ceniza y el mantenimiento de la red de cenizómetros del volcán Sangay en la provincia de Chimborazo.
E. Telenchana, A. Vásconez, M. Encalada
Instituto Geofísico
Escuela Politécnica Nacional
Con el objetivo de fortalecer la vigilancia de los procesos volcánicos y contar con la información necesaria para el entendimiento sobre la geodinámica que presenta la caldera de Potrerillos, el Instituto Geofísico de la Escuela Politécnica Nacional, en compañía de vigías y habitantes del sector de Tufiño en la provincia del Carchi, realizaron una serie de trabajos que culminaron exitosamente con la instalación de una estación GNSS de monitoreo geodésico.
Las actividades se desarrollaron durante la semana del 24 al 28 de octubre, en la cual se cumplieron actividades de búsqueda de sitio, estudio e implementación de enlaces de transmisión, transporte de equipos y materiales, edificación de infraestructura, conexión de dispositivos y sistema de alimentación, configuración de equipos y puesta en marcha de la estación.
Los datos generados por el equipo GPS permiten conocer diariamente la posición exacta de la antena con precisión milimétrica. En caso de existir deformación en Potrerillos, los datos brindarán información sobre las magnitudes y direcciones de los desplazamientos superficiales detectados, en base a los que se puede construir modelos y así determinar la ubicación y geometría de la fuente de deformación.
El Instituto Geofísico desea manifestar su sincero agradecimiento por todo el apoyo recibido de parte de la Agencia Internacional para el Desarrollo de los Estados Unidos (USAID) a través del Programa de Asistencia ante Desastres Volcánicos (VDAP), que entregó en donación toda la infraestructura, así como los dispositivos y equipos que fueron instalados en esta nueva estación permanente GPS. De la misma manera, agradecemos al Instituto Panamericano de Geografía e Historia (IPGH), que por medio del proyecto: “Implementación de métodos gravimétricos y sísmicos para el estudio de calderas volcánicas. Caso de estudio: Calderas fronterizas de la zona de Potrerillos/Chiles, Ecuador-Colombia” financió los trabajos y gastos relacionados, que hicieron posible el cumplimiento de los objetivos propuestos. También deseamos reconocer la ardua labor de los vigías y pobladores de Tufiño que colaboraron en los trabajos de transporte y levantamiento de la base de monitoreo.
M. Yépez, R. Toapanta, C. Macías,P. Mothes
Instituto Geofísico
Escuela Politécnica Nacional
Antecedentes
El Complejo Volcánico Chiles Cerro Negro, se localiza en los dominios de la Cordillera Occidental, provincia de Carchi - Ecuador y departamento de Nariño - Colombia. El complejo volcánico ha sido catalogado como “Potencialmente Activo” según el Mapa de Volcanismo Plio-cuaternario de Bernard y Andrade (2011). Pese a que no existe evidencia de actividad eruptiva explosiva importante en los últimos 6000 años (Santamaría et al., 2017), se tiene descripciones de actividad superficial de tipo fumarólica y de sismos asociados con su actividad en los últimos dos siglos (Monsalve y Laverde, 2014).
Desde 2013, en la zona aledaña al Complejo Volcánico Chiles - Cerro Negro (CV-CCN) empezó a registrarse una serie de eventos sísmicos que fueron incrementando en frecuencia y magnitud desencadenando una crisis con sismos sentidos por los residentes de las poblaciones de Chiles en Colombia y Tufiño en Ecuador. La sismicidad alcanzó su punto máximo el 20 de octubre de 2014 con la ocurrencia de un sismo de magnitud 5.9 y un número de más de 6000 sismos volcano-tectónicos (VT) por día (IGEPN, 2014a, 2014b). Desde entonces, se han venido registrando varios enjambres de sismos en la zona, incluyendo varios eventos sentidos. Más recientemente, el 25 de Julio de 2022 un sismo de magnitud 5.6 Mw sacudió la zona de influencia del CV-CCN causando importantes daños en la zona de El Ángel y San Gabriel (IGEPN, 2022). Desde entonces la actividad ha decrecido regresando a niveles considerados como “normales” para esta zona.
La compleja interacción entre el sistema magmático del CV-CCN, las fallas tectónicas regionales de El Ángel y el sistema hidrotermal (que solamente del lado ecuatoriano cuenta con más de 10 manifestaciones superficiales; Figura 1) juegan un papel crucial para las interpretaciones de los procesos que ocurren en esta zona (IGEPN, 2022).
Reporte de los trabajos efectuados
Los días 21 y 22 de septiembre de 2022, un equipo conformado por técnicos del IG-EPN realizó trabajos de monitoreo en las fuentes termales asociadas al complejo volcánico Chiles- Cerro Negro. Dichos trabajos consistieron en: muestreo de aguas para determinación de componentes mayoritarios, medición de parámetros físico-químicos y la determinación de especies gaseosas mayoritarias usando la técnica multiGAS (Aiuppa et al., 2004; Shinohara, 2005). Las fuentes visitadas durante esta campaña fueron: El Hondón, Aguas Hediondas, Lagunas Verdes, El Artezón, Aguas Negras, Potrerillos, Montelodo y La Ecuatoriana (Figura 1).
Para el presente reporte se tomará en cuenta solo aquellas fuentes en las que se hayan presentado comportamientos inusuales durante este último período de recolección de datos 2019-2022.
El Hondón
Luego de la visita realizada en julio de 2022, se ha podido evidenciar una aparente estabilidad en cuanto a la actividad superficial de la zona (Figura 2). Tanto el número de fuentes como el de las grietas se ha mantenido sin cambios importantes. El comportamiento de la fuente es similar al observado en visitas anteriores, se caracteriza por la ocurrencia de varias “surgentes” de agua en ebullición, que presentan temperaturas de 79 - 84°C (siendo esta última la temperatura de ebullición del agua esperable a la altura de esta fuente (3650 msnm).
En este sitio se obtuvieron datos continuos de medición de concentración de gas. Se posicionó al equipo MultiGAS en dirección de la columna de gas emitida por las fuentes activas. Cabe destacarse que a diferencia de otras veces, en esta ocasión no fue posible percibir olor a huevos podridos (característico de la emisión de H2S). La concentración de CO2 en este campo llegó a un máximo de 1649 ppm. Este valor está dentro de los parámetros analizados previamente en este sitio, sin embargo, no se puede descartar que puedan existir emisiones pulsátiles con mayores concentraciones del gas, sin que éstas puedan ser anticipadas.
Aguas Hediondas:
En la zona de Aguas Hediondas, se posicionó el equipo MultiGAS a una distancia prudente del sitio de emisión (Fig. 2), sin embargo, se podía percibir que la concentración de los gases era sumamente elevada, con lo cual el equipo se saturó para el H2S en varias ocasiones. Los valores de concentración para el CO2 también fueron bastante elevados (alcanzando hasta 7735 ppm), pero ligeramente inferiores a los valores obtenidos con el mismo equipo en campañas anteriores (ej. 8780 ppm en Julio 2022).
Las razones CO2/H2S disminuyeron a partir de marzo de 2022 para volver a incrementarse a partir de julio con una pendiente menor, sugiriendo que la perturbación del sistema hidrotermal continúa. Estos valores se muestran en la gráfica de la figura 3.
Lagunas Verdes
Mediciones Geoquímicas
La zona de Lagunas Verdes, lleva su nombre por la existencia de al menos 6 lagunas cuya coloración ha sido tradicionalmente azul verdosa. Las lagunas tenían áreas aproximadas de 18800, 9700, 3660, 950, 890 y 240 m2 respectivamente, calculadas en base a imágenes Satelitales de Google Earth del 20/11/2016 (Figura 3). Desde los años 70 se ha reconocido esta zona como un campo de emisión de gas, se sabe que en el pasado el flujo era abundante sobretodo en la zona marcada con el punto amarillo (Figura 3). Hoy en día las emisiones se caracterizan por la presencia de gas difuso (Villarroel et al., 2021) principalmente CO2 y H2S generando un fuerte olor a huevos podridos perceptible desde la carretera. Las emisiones gaseosas han provocado alteración en las rocas que incluyen minerales como caolinita y alunita (CELEC EP & ISAGEN, 2012; Sierra, 2022), las zonas de alteración han sido delimitadas con color rojo en la Figura 3.
Utilizando el MultiGAS se realizaron mediciones en la zona de mayor flujo de gas (punto amarillo Figura 3). La concentración máxima de CO2 alcanzó 30 000 ppm, muy alta respecto a concentraciones medidas en campañas anteriores, cuyos valores no superan los 15 000 ppm. Del mismo modo los valores de H2S fueron tan altos que llegaron a saturar el equipo (H2S > 120 ppm). Las razones obtenidas en este sitio son claras únicamente para CO2/H2S. En comparación con los valores obtenidos en julio, las nuevas razones CO2/ H2S son más altas.
Las emisiones gaseosas de Lagunas Verdes no muestran contenidos significativos de vapor de agua, los valores de H2O obtenidos están a la par del agua presente en el ambiente. En tal virtud, las proporciones volumétricas no muestran resultados confiables, por consiguiente, no pueden ser comparadas con las que se han obtenido anteriormente.
Observaciones Visuales
En lo que respecta a las observaciones visuales, la comparación entre la última campaña de mediciones realizada en julio 2022 (a pocos días del sismo de magnitud 5.6Mw) y la campaña del 22 de agosto muestran una dramática disminución en el nivel de agua de las Lagunas Verdes. Se estima un descenso de casi 0,5m en el nivel de las lagunas, lo que se podría traducir como la pérdida de al menos unos 10 mil metros cúbicos de agua. El descenso del agua ha provocado incluso que las Lagunas pierdan su color verdoso característico, hoy se muestran con un tono negruzco (Figura 5).
La zona de Lagunas Verdes y sus aguas son vigiladas por el IG-EPN desde el año 2014 y desde que se tiene registros no se ha visto una disminución tan abrupta en el nivel del agua. Con un pH promedio de 6,25, una conductividad promedio de 46 µS/cm y temperaturas de entre 7 y 15°c (fluctuantes con el clima) en adición de las firmas isotópicas de isótopos estables (Sierra, 2022) se ha interpretado que estas lagunas corresponden a un cuerpo de agua superficial recargado por lluvia con escaso o nulo aporte de fluidos de origen profundo.
Siendo que la principal recarga de agua de estas lagunas es la lluvia, los factores climáticos como la ausencia de precipitaciones en la zona pudieran contribuir a la disminución del nivel otra explicación plausible y que justificaría más fácilmente el vertiginoso descenso en los niveles es que la frecuente sismicidad haya fracturado el piso a la base de las lagunas aumentando la permeabilidad de las rocas y facilitando la percolación del agua hacia afuera de las lagunas.
Deslizamientos en la zona
Tras la ocurrencia de un sismo de magnitud 4,3 del 18 de agosto de 2022 a las 19:22 TL se produjo un deslizamiento en la zona cercana a Lagunas Verdes que provocó un bloqueo en la vía Tulcán- Maldonado. Aunque los escombros fueron removidos rápidamente por las autoridades (Figura 6-A), aún se pueden observar las cicatrices de los fenómenos de remoción en masa de tipo caída, el más grande de ellos puede ser observado en la Figura 6-B, pero se observan otras zonas de inestabilidad y de deslizamientos de menor magnitud, en el borde del escarpe (línea amarilla Figura 3).
Aguas Negras:
Durante las últimas campañas se ha evidenciado una aparente similitud en cuanto a las razones gaseosas medidas en la zona de Aguas Negras comparándolas con las mediciones de las Lagunas Verdes. El equipo MultiGAS fue posicionado cerca de la zona de burbujeo, donde se percibía con mayor intensidad el olor a H2S (Figura 7). Las concentraciones máximas de CO2 y H2S, fueron 2822 y 118 ppm respectivamente. Estos valores son similares a los registrados en la campaña de julio, pero elevados respecto a campañas anteriores.
La razón CO2/H2S obtenida en este sitio mantiene la tendencia observada desde enero de 2020 (Fig. 3), tal como se observa en la figura 3. Si bien no se observa un cambio en la tendencia general, se observa una disminución en la pendiente de la curva, respecto a las 2 últimas mediciones que también pudiera relacionarse a la perturbación observada en el sistema.
Montelodo
La fuente termal de Montelodo, se ubica unos 3 km al sur de Tufiño (Figura 1), dentro de una propiedad agrícola privada. La fuente termal de Montelodo es vigilada periódicamente por el IG-EPN desde enero de 2017. Históricamente, esta fuente se ha caracterizado por temperaturas modestas de aproximadamente 27°C, conductividades promedio de 400 µS/cm y pH de 6,5. Tradicionalmente la fuente consistía en una emanación de agua de bajo flujo desde la pared de roca que posteriormente se mezclaba con un riachuelo de agua fría.
Los pobladores reportan que después del sismo del 25 de Julio de 2022, al menos tres nuevos ojos de agua aparecieron en la pared de roca a escasos metros de la fuente principal, la cual también incrementó significativamente su caudal. Las nuevas surgentes parecen tener características muy similares a la fuente original, por lo que se presume un origen común.
Lo más probable es que tras el sismo el fracturamiento de las rocas haya permitido un incremento en la permeabilidad, abriendo nuevos caminos para la salida del agua, así mismo el cambio en el estado de esfuerzos pudiera haber generado mayor presión en el interior aumentando el flujo de agua.
Concentración de SO2:
En ninguno de los casos en los que se utilizó el equipo MultiGAS (Lagunas Verdes, Hondón, Aguas Hediondas y Aguas Negras) se detectó la presencia de SO2, lo cual indica que los 4 puntos de muestreo presentan una actividad principalmente hidrotermal. Los valores de SO2 que se obtuvieron en los tres sitios (Lagunas Verdes, Aguas Hediondas y Aguas Negras) están en el rango de valores considerados como valores de base o cero, según la precisión del equipo.
Parámetros físico – químicos:
Se presentan los datos de los parámetros físico-químicos en Aguas Hediondas por ser la fuente en la que mejor se han evidenciado cambios a lo largo del tiempo (Figura 9). En cuanto al pH, se observa una tendencia al descenso, lo que se traduce como la emanación de aguas más ácidas. Por otra parte, la temperatura ha sufrido ligeros incrementos, pasando de 56.6 a 59 °C. La conductividad se mantiene estable en alrededor de 2800 µS/cm. Tanto Lagunas Verdes como Aguas Negras no muestran una variación en estos parámetros. Para el caso del Hondón la temperatura ha disminuido a 83.4 °C, casi dos grados por debajo del valor promedio medido desde 2019 (85 °C). La conductividad no ha mostrado mayor variación y el pH ha disminuido de 7.59 a 6.97.
Evaluación de la amenaza por proximidad a los campos fumarólicos
En las zonas de Aguas Hediondas, Aguas Negras y Lagunas Verdes: La proporción de CO2 y H2S en el ambiente aún alcanza valores bastante elevados, incluso mayores que los detectados las últimas campañas. Respirar aire contaminado con estos gases puede ser perjudicial para la salud sobretodo en concentraciones altas y tiempos de exposición prolongados, puede causar: mareos, malestar general y en casos extremos hasta asfixia, envenenamiento y muerte.
Como se detalló anteriormente en la descripción de cada una de las fuentes de emisión, las concentraciones del gas son sumamente elevadas, por tal razón representan un peligro para quienes se acerquen a estos sitios, por ello se recomienda el uso de máscaras antigás con filtros especiales, las cuales ofrecen protección para gases ácidos y halogenuros. Sin embargo, incluso estas máscaras no resultan de utilidad ante la presencia del CO2, un gas inoloro, e incoloro, que cuando alcanza altas cantidades se acumula en zonas bajas y reemplaza al oxígeno causando asfixia.
CONCLUSIONES
RECOMENDACIONES:
Con base en las observaciones de campo se recomienda:
Al momento de emisión del presente informe los niveles de actividad de volcán son: SUPERFICIAL MUY BAJA sin cambio, e INTERNA BAJA sin cambio. En caso de presentarse novedades respecto a la actividad del CV-CCN, el IG-EPN informará oportunamente.
REFERENCIAS:
Realizado por: D. Sierra, M. Almeida, S. Hidalgo
Revisado por: M. Ruiz
Instituto Geofísico
Escuela Politécnica Nacional
Incremento en la actividad superficial e interna del volcán Cotopaxi
Resumen
El día 21 de octubre a las 19h44, las estaciones sísmicas en los flancos del Cotopaxi empezaron a registrar una señal sísmica de tipo tremor de baja frecuencia de larga duración y pequeña amplitud. Esta señal, se mantuvo hasta las 00h40 del sábado 22 de octubre y fue acompañada por la emisión de gases y ceniza, produciendo una caída moderada de este material en el Refugio José Rivas. La columna volcánica fue detectada por el Centro de Avisos de Cenizas Volcánicas de Washington (W-VAAC), indicando una dirección de la nube de ceniza hacia el nororiente. Desde este evento se ha observado una emisión continua de gases desde el cráter del volcán alcanzando una altura variable entre 200 y 1000 m sobre el nivel del mismo.
Esta reactivación volcánica no ha presentado señales premonitoras de mediano plazo. Al momento, los parámetros de vigilancia analizados (sismicidad, gases y ceniza) indican un aporte magmático para esta reactivación. Si bien la actividad superficial del 21 de octubre es la mayor registrada en los últimos siete años, es muy pequeña en comparación con lo observado entre agosto y noviembre de 2015.
La incertidumbre con respecto a la evolución de esta actividad es muy grande debido a la falta de señales premonitoras claras de estos eventos. En este sentido es importante mantener activo el sistema de vigilancia y continuar con las tareas de prevención y mitigación relacionadas con los escenarios eruptivos del volcán Cotopaxi. El IGEPN se mantiene atento a cambios en las condiciones presentadas por el volcán para dar, en lo posible, información oportuna a las autoridades y la población en general.
Anexo técnico-científico
Registro Sísmico
El viernes 21 de octubre, aproximadamente a las 19h44 hora local, se registró un episodio de tremor volcánico en la red local de vigilancia sísmica, especialmente en la estación sísmica BREF, situada 2.4 km al norte de la cumbre del volcán. La secuencia se inicia a las 19h44 con un evento de alta frecuencia de magnitud 0.7 (Fig. 1, flecha negra). Minutos más tarde, comienza el episodio de tremor volcánico. La fase más intensa del tremor duró aproximadamente 4 horas.
La amplitud del tremor se caracteriza como pequeña. Como comparación, el tremor del 21 de octubre 2022 apenas sobrepasó la mitad de las amplitudes de los episodios de tremor que se registraron durante el proceso eruptivo de 2015. Además, el tremor del 21 de octubre constituyó un solo pulso de 4 horas, mientras que en 2015 esos episodios duraron varios días. Esto significa que el tremor del 21 de octubre fue energéticamente pequeño comparado con otros episodios del pasado.
En los días y semanas anteriores, la sismicidad diaria no mostró anomalías ni cambios relevantes fuera del nivel de base establecido posterior a la erupción del 2015.
Deformación
Para el análisis de deformación, se realizó el procesamiento de estaciones GPS que están ubicadas en los flancos del volcán, de inclinómetros y de imágenes satelitales procesados con el método InSAR. En ninguna de estas técnicas se observa evidencia de deformación en el edificio volcánico.
En el procesamiento InSAR de las imágenes TerraSAR-X no se observa ninguna evidencia de inflación en las semanas precedentes al evento del 21 de octubre (Fig. 2).
El procesamiento de los GPS continuos tampoco muestra evidencia de deformación desde el año 2016, manteniéndose una tendencia horizontal. Esto se muestra en la Figura 3 para la estación ubicada en el flanco oriental del volcán.
El inclinómetro del Refugio presenta en la actualidad únicamente el patrón cíclico que responde a las variaciones anuales del clima. Para el mes de octubre en los últimos años, se observa que el valor relativo de inclinación en promedio alcanza los 75 urad, con un valor máximo de 80 urad (Fig. 4).
La caída de ceniza fue reportada desde el refugio norte del volcán por un grupo de andinistas de la Asociación Ecuatoriana de Guías de Montaña (ASEGUIM). El 22 de octubre un grupo de técnicos del IG-EPN realizó una visita de campo al refugio y tomo una muestra sobre el techo del refugio (Fig. 6A). Adicionalmente, Cristian Rivera, guía de ASEGUIM, también muestreó la caída de ceniza sobre su vehículo parqueado durante la caída de ceniza en el parqueadero del refugio (Fig. 6B). Finalmente, técnicos del IG-EPN recuperaron una muestra adicional el día 25 de octubre, gracias a la acumulación de este material sobre el panel solar de una estación del INAMHI ubicada en el flanco del volcán (Fig. 6C). Cabe recalcar que los andinistas que suben al Cotopaxi han reportado depósitos de ceniza en ocasiones anteriores, más recientemente el 27/11/2021. Sin embargo, la caída de ceniza del 21/10/2022 se destaca como la más intensa.
Las muestras fueron secadas y pesadas en el laboratorio del IG-EPN. Los resultados indican que la caída de ceniza fue moderada en el sector del refugio (Fig. 7A). La imagen del satélite Sentinel-2 en colores naturales muestra el depósito de ceniza en el flanco norte el 23 de octubre de 2022 (Fig. 7B). Depósitos de ceniza en el glaciar se han visto también previamente en las imágenes del satélite Sentinel-2 desde 2015 como el 27/11/2021. Sin embargo, es la primera vez desde la erupción de 2015 que la ceniza cubre un área tan extensa.
La muestra más pura (sin evidencia de removilización ni contaminación) correspondiente al refugio fue analizada en el laboratorio del IG-EPN con el fin de caracterizar sus componentes. El análisis de la distribución granulométrica (Fig. 8) realizado con tamizaje manual (entre 1000 y 63 µm) y difracción láser (entre 5000 y 0.03 µm) muestra que la ceniza es extremadamente fina (tamaño medio 55 µm) y bimodal (modo grueso a 152 µm y modo fino a 15 µm). Las cantidades de ceniza inhalable (PM100 = <100 µm, pueden ingresar al sistema respiratorio), torácica (PM10 = <10 µm; puede ingresar a los pulmones) y respirable (PM4 = <4 µm; puede ingresar en los alvéolos), indican que la ceniza tiene un potencial patológico moderado.
El análisis de los componentes de la ceniza realizado al microscopio binocular muestra que en la fracción de 125 a 180 µm, los componentes dominantes (78%) son fragmentos accidentales (rocas antiguas del conducto volcánico con diferentes grados de alteración; A1 a A3 en Fig. 9). Sin embargo, aproximadamente 22% de los componentes son fragmentos juveniles (partículas con vidrio volcánico sin evidencia de alteración (J1 a J3 en Fig. 9), lo cual indica la participación directa de magma en el proceso eruptivo. Tanto al nivel de tamaño de grano como al nivel de componentes, la ceniza emitida el 21/10/2022 es comparable a la ceniza emitida el 14/08/2015. Una diferencia observada en el campo es un menor olor a azufre para el depósito del 21/10/2022.
Anomalías térmicas satelitales
Hasta el momento los sistemas satelitales MIROVA y FIRMS no han detectado anomalías térmicas en el volcán Cotopaxi. En la imagen de infrarrojo de Sentinel-2 del 23/10/2022 se observa un pequeño punto caliente en el cráter debajo de una pequeña emisión de gas (Fig. 10). Este punto caliente ha sido observado de manera repetitiva desde 2015. Sin embargo, es la primera vez que se le observa desde el 12/11/2020.
Mediante el monitoreo térmico aéreo se pudo constatar que los campos fumarólicos loca-lizados al exterior del cráter se encuentran activos y presentan temperaturas similares a las de años anteriores (post 2015), con valores máximos de 40°C (Fig. 11). Por otro lado, el conducto presenta anomalías térmicas tanto en las paredes como en la base del mismo, de las cuales no se puede estimar la temperatura real debido a la gran cantidad de gases que son emitidos continuamente.
Desgasificación y medidas de dióxido de azufre (SO2)
Luego de la fase eruptiva de 2015, el volcán Cotopaxi continuó con la emanación de gases volcánicos (por ejemplo, SO2: dióxido de azufre, CO2: dióxido de carbono H2S: ácido sulfhídrico) y vapor de agua. La red de DOAS del IGEPN es capaz de medir únicamente los flujos de SO2. En algunas ocasiones, estas emisiones (flujo máximo diario) se intensificaron debido a la influencia de la velocidad del viento en el cálculo del flujo y por lo tanto se observa un patrón de variación estacional con mayores valores en los meses de verano que presentan vientos de altas velocidades (Fig. 12). Estas mediciones son procesadas y evaluadas diariamente y son reportadas en los informes volcánicos correspondientes.
Luego del reporte de caída de ceniza en la zona del Refugio José Rivas (21/Oct/2022) se realizaron travesías con un instrumento móvil DOAS (instrumento para medir flujo de SO2), que funciona bajo el mismo principio de las estaciones permanentes, pero que puede ser transportado en un auto siguiendo la columna de emisión. Previo al 21 de octubre de 2022, no era posible registrar valores de flujo utilizando este instrumento, sin embargo, luego de este episodio, la pluma pudo ser detectada en el tramo de la vía Panamericana E35, desde el sector Tiopullo, entrada occidental del Parque Nacional Cotopaxi (Caspi), hasta la zona de la Laguna de Limpiopungo (dentro del PNC); confirmando la presencia de este gas en cantidades considerables (> 1580 ton/d), cerca al volcán y un poco más disperso sobre la Panamericana, como se observa en la figura 13 .
De igual forma, el satélite pudo detectar estas emisiones del gas en la atmósfera, con anomalías puntuales sobre el volcán. Sin embargo, en este método es difícil discriminar la fuente del gas, en particular en nuestro país, donde dos volcanes más lo emiten de manera diaria (Reventador y Sangay), y, por consiguiente, la anomalía fue más evidente entre los días 20 a 21 y 22 a 23 de octubre (Fig. 14). Desafortunadamente este método no funciona como un precursor, ya que sus datos son obtenidos con uno o dos días de diferencia desde su captura.
Finalmente, durante los dos sobrevuelos llevados a cabo entre el 26 y 27 de octubre, se pudo utilizar un equipo multiGAS (equipo para medir concentración de gases). El equipo multiGAS permitió medir las concentraciones de CO2, SO2 y H2S en la pluma de gas volcánico (Fig. 15). Como resultado, las razones obtenidas de SO2/H2S están alrededor de 4, mientras que las de CO2/SO2 están entre 2 y 3, siendo ligeramente mayores a las obtenidas en 2015 durante la última erupción del volcán. Estos valores indican un aporte magmático para el gas emitido por el volcán Cotopaxi.
La emisión de vapor de agua y otros gases volcánicos como el CO2, SO2 y H2S, se visualiza continuamente en los últimos días indicando un incremento con respecto a lo observado en los meses pasados.
Interpretación de datos
En base a la información disponible, se concluye que el volcán Cotopaxi presentó una actividad eruptiva muy pequeña con un índice de explosividad volcánica (VEI) inferior a 1. El análisis conjunto de los diferentes datos de vigilancia muestra que la actividad reciente del Cotopaxi está provocada por la presencia de magma en el conducto volcánico, el cual interactúa con el sistema hidrotermal del volcán. Sin embargo, hasta el momento no hay evidencia de un ingreso de un mayor volumen de magma hacia el sistema.
Los datos de monitoreo obtenidos desde el 21 hasta el 28 de octubre indican una diminución paulatina de la actividad superficial caracterizada mayormente por columnas de gases y vapor de agua alcanzando hasta 1000 m sobre el cráter. Al momento la actividad interna no muestra un cambio significativo. La sismicidad sigue dominada por pequeños sismos de tipo LP; no hay deformación detectable en los flancos y los gases magmáticos, si bien están presentes, se encuentran en niveles moderados. No hay evidencia todavía de un cambio significativo en el comportamiento del volcán Cotopaxi.
Escenarios eruptivos
En base a los parámetros de vigilancia volcánica se propone dos escenarios principales, en orden de probabilidad:
1) La emisión de ceniza del 21 de octubre de 2022 correspondería a un evento aislado, similar a otros menores durante estos últimos 7 años, por ejemplo el del 27/11/2021. Este tipo de eventos puede repetirse en el corto y mediano plazo (días a semanas), sin mostrar signos precursores. En este escenario no se espería actividad superficial mayor a corto plazo.
2) La emisión de ceniza del 21 de octubre de 2022 correspondería al inicio de un periodo eruptivo, relativamente equivalente a la actividad del 14/08/2015. Al momento la incertidumbre es demasiado alta para estimar el tamaño de este posible periodo eruptivo, así como la velocidad de los cambios que el volcán podría experimentar. Es importante destacar que la presencia del magma en el conducto y la desgasificación indican un sistema abierto. Bajo estas condiciones los signos premonitores de eventos eruptivos son muy sutiles e incluso inexistentes, limitando la anticipación o pronóstico de eventos mayores.
Estos escenarios podrán ser cambiados de acuerdo a la evolución de los parámetros que se vigila en el volcán
El IG-EPN se mantiene pendiente de lo que pasa en el volcán, basado en la experiencia de las erupciones pasadas (Pichincha, Tungurahua, Cotopaxi) y presentes (Reventador, Sangay).
Elaborado por: P. Mothes, B. Bernard, S. Hidalgo, M. Almeida, S. Hernández, M. Córdova, F. Naranjo, J. Salgado, S. Vallejo.
Instituto Geofísico
Escuela Politécnica Nacional
© 2025 Instituto Geofísico - EPN
Inicio | Escuela Politécnica Nacional | Correo Institucional
Ladrón de Guevara E11-253, Aptdo. 2759 Quito - Ecuador.
Teléfonos: (593-2)2225655 ; (593-2)2225627 Fax: (593-2)2567847