Fragmentos tomados del documento original EL TERREMOTO DE RIOBAMBA
de 4 de febrero de 1797
Autor: Jose Egred A.
Instituto Geofísico - Escuela Politécnica Nacional
El terremoto de 1797 es el de mayor intensidad entre los que ocurridos en nuestro territorio, afirmación que se funda en los efectos que tuvo. Incluso fue uno de los más grandes del continente, si nos atenemos a lo que testifican varios manuscritos en los que se lo catalogó como "... el temblor más formidable que se haya experimentado desde el descubrimiento de América hasta aquel día..." En la villa de Riobamba fue tal la destrucción, que los sobrevivientes no juzgaron conveniente reconstruirla en el mismo sitio, ya que a más de la destrucción total de las construcciones, el represamiento del río que atravesaba la villa amenazaba con un futuro desbordamiento. Entonces, en concordancia con las autoridades de la Real Audiencia de Quito y luego de largas y engorrosas deliberaciones y análisis de carácter geográfico, político, social y religioso que formaron voluminosos expedientes y demandaron un considerable tiempo, decidieron finalmente el cambio de sitio de la ciudad al lugar que hoy ocupa. No todos los pobladores quedaron satisfechos con la decisión, pero ante la orden terminante del presidente de Quito, lo aceptaron y Riobamba fue reconstruida desde la nada. Otras poblaciones también intentaron mudarse de sitio, para lo cual el presidente ordenó que se le informara la realidad en que se encontraban, las razones para solicitar el cambio y el lugar al que deseaban trasladarse. Algunos poblados y villas como Ambato lo intentaron pero finalmente tal propósito no se concretó o los cambios fueron mínimos.
Los efectos del terremoto no se limitaron a la destrucción de ciudades y pueblos de la zona central del Valle Interandino, pues fue tal la energía liberada, que se alteró la configuración topográfica de montes, valles y ríos de la región, con el desplome cerros completos, valles que se rellenaron, ríos que cambiaron de curso, desaparición de haciendas enteras por los deslizamientos o en grietas de increíble magnitud. El terreno se hundió en unos lugares y se levantó en otros. En resumen, en una extensa zona cambió por completo el paisaje. Traduciendo lo anterior a términos sismológicos, se debe decir que ocurrieron casi todos los fenómenos asociados con los terremotos, tales como: fallas en la superficie, levantamientos y hundimientos del suelo, licuefacciones, deslizamientos, grietas, ondas observadas en la tierra, represamientos de ríos, avalanchas, ruidos subterráneos y posible volcanismo asociado. El área macrosísmica, de acuerdo a la división política actual, va desde el sur de la provincia de Chimborazo hasta la zona central de la provincia de Pichincha, a lo ancho de todo el Valle Interandino.
En Riobamba la mayoría de casas cayó desde sus cimientos, perdiéndose hasta el trazado de las calles. A la destrucción causada por la vibración del suelo, se sumó el deslizamiento del monte Cullca -al pie del cual se encontraba la ciudad- sepultando tres barrios, hasta la plaza de La Merced, con un volumen de tierra que hizo imposible rescatar personas o bienes. De acuerdo con el plano de la antigua Riobamba y la ubicación de la plaza de La Merced, se cubrió aproximadamente la cuarta parte de la ciudad. Quedaron destruidas todas las iglesias y conventos, edificios públicos, el hospital y sus seis escuelas. Muchas otras poblaciones del corregimiento de Riobamba, también fueron prácticamente arrasadas y en general todas sus parroquias experimentaron daños mayúsculos. Ambato y las poblaciones de su Corregimiento corrieron similar suerte. En lo que hoy constituye la provincia del Cotopaxi, Latacunga fue la localidad más destrozada. Efectos de consideración se presentaron desde Guaranda hasta Machachi y con intensidad decreciente llegaron hasta Quito por el norte y posiblemente Cuenca por el sur.
El sismo fue sentido por el norte hasta Popayán y por el sur hasta Piura y en sentido esteoeste, desde la costa hasta el Napo, o seguramente más lejos, pues esto no se puede precisar porque los territorios orientales casi no estaban colonizados.
El número de víctimas será imposible determinarlo con exactitud, pues si bien el presidente de Quito ordenó realizar una conteo prolijo de los muertos, agrupándolos "por castas sociales", los resultados no fueron satisfactorios por varios motivos, entre ellos, la circunstancia de que muy poco se tomó en cuenta a los estratos sociales bajos. A los indígenas de los sectores rurales no se les prestó mayor atención ni siquiera en los lugares más próximos y peor aún en sitios alejados donde, a más de las personas que murieron bajo los escombros de casas y chozas, los derrumbes y las avalanchas causaron gran mortandad imposible de ser constatada.
El documento original se encuentra en: http://www.igepn.edu.ec/index.php/publicaciones-para-la-comunidad/el-terremoto-de-riobamba-de-1797.html
5 de febrero de 2012
La actividad sísmica del volcán se mantiene caracterizada por la constante generación de una señal de tremor de baja a moderada a energía, y el registro de algunos eventos explosivos de tamaño moderada a pequeño. Debido a que se mantiene la alta nubosidad en la zona del volcán, no se han realizado observaciones directas de las manifestaciones superficiales. Sin embargo aproximadamente a las 20h35 de ayer, 4 de febrero, se pudo observar que con un evento explosivo se produjo un fuerte cañonazo y la expulsión de bloques incandescentes en forma de bloques que rodaron por los flancos del volcán aproximadamente 1 kilómetro desde el borde del cráter. Desde la tarde de ayer no se han recibido reportes de caída de ceniza.
LT
10:30 (tiempo local)
Instituto Geofísico
Escuela Politécnica Nacional
4 de febrero de 2012 - Actualización 2
Aproximadamente a las 9:30 (tiempo local) de hoy, 4 de febrero 2012, personal del Instituto Geofísico en un vuelo comercial pudo observar sobre la zona del volcán Tungurahua una columna de emisión poco energética de aproximadamente 1 kilómetro de altura sobre el nivel del cráter, con bajo a moderado contenido de ceniza y dirección de movimiento hacia el oeste.
De acuerdo a los reportes emitidos por la Washington VAAC (Centro de Avisos de ceniza volcánica - http://www.ssd.noaa.gov/VAAC/archive.html) la nube generada al inicio de este proceso alcanzó entre 7 y 8 Km de altura sobre el nivel del cráter y se dirigió hacia el nor-este para luego girar hacia el sur-este (ver actualización de 08:30 - 4 de febrero de 2012)
La actividad sísmica se mantiene caracterizada por la generación constante de una señal de tremor, pero que varía entre períodos de alta y baja energía. Esta actividad sísmica está relacionada con la generación de la constante columna de emisión poco energética con bajo a moderado contenido de ceniza. Aproximadamente a las 09:00 (tiempo local) se recibió reportes de caída de ceniza en la zona de Cevallos, provincia del Tungurahua.
LT
10:30 (TL)
Instituto Geofísico
Escuela Politécnica Nacional
4 de febrero de 2012 - Actualización
Del análisis realizado a las imágenes satelitales se puede determinar que la nube de ceniza del volcán Tungurahua generada al inicio de esta nueva actividad se dirigió hacia el nor -este (nor - oriente), luego gira y se dirige hacia el sur - este (sur-oriente), como se puede observar en la imagen obtenida de la Washington VAAC (Centro de Aviso de Cenizas volcánicas - http://www.ssd.noaa.gov/VAAC/).
Dirección de la nube de ceniza generado en el inicio de la actividad del volcán Tungurahua del día 4 de febrero de 2012. Imagen tomada de: http://www.ssd.noaa.gov/VAAC/
La actividad sísmica se mantiene y se han recibido reportes de la generación de esporádicos bramidos. Debido a que se mantiene la alta nubosidad en la zona del volcán no se puede realizar observaciones directas de las manifestaciones superficiales.
LT
08:30
Insituto Geofísico
Escuela Politécnica Nacional
4 de febrero de 2012
Aproximadamente desde de las 04:40 (tiempo local) de la madrugada de hoy, 4 de febrero de 2012, se comenzó a registrar una señal sísmica constante de tremor. A las 05:50 (tiempo local) se registró una explosión de tamaño moderado, que generó un bramido de aproximadamente 5 minutos de duración, escuchado en Palitahua y de manera leve en Guadalupe (a 14 km al noroeste del volcán). Se han recibido reportes de leves bramidos y caída de cascajo (lapilli fino) de tamaño de grano de arroz a azúcar gruesa en Baños, Pillate y Juive. Al momento desde estas zonas se reporta caída de ceniza color negro.
La actividad sísmica del volcán se mantiene, y se caracteriza por una señal de tremor de alta energía que se registra en todas las estaciones del volcán. Debido a la presencia de alta nubosidad en la zona del volcán no se han realizado observaciones directas de las manifestaciones superficiales, sin embargo, entre nubes se puede determinar una columna de emisión con ceniza en dirección nor-occidente. En las imágenes satelitales se pudo establecer la presencia de un anomalía térmica en la zona del cráter a aproximadamente las 05:58 (tiempo local).
Volcán Tungurahua totalmente nublado durante la mañana del 4 de febrero de 2012
LT
06:45 (tiempo local)
Instituto Geofísico
Escuela Politécnica Nacional
Desde el final de la Edad Media hasta casi acabado el siglo XIX, la Tierra pasó por un largo período de enfriamiento que los científicos denominan Pequeña Edad de Hielo, una época en la que pueblos alpinos quedaron arrasados por el avance imparable de los glaciares y los ciudadanos londinenses, aunque parezca increíble, podían patinar sobre el Támesis. El origen de esta abrupta y larga temporada de reducción de temperaturas ha sido siempre un misterio envuelto en especulaciones, pero ahora un equipo internacional, dirigido por investigadores de la Universidad de Colorado Boulder en EE.UU., cree tener la respuesta al enigma. Este frío intenso fue causado, según publican esta semana en la revista Geophysical Research Letters, por unas gigantescas erupciones volcánicas en el trópico que iniciaron una cadena de efectos sobre el clima.
Según la nueva investigación, la Pequeña Edad de Hielo comenzó repentinamente entre los años 1275 y 1300 d.C. tras sucederse cuatro erupciones volcánicas masivas en el trópico, unos episodios que duraron unos cincuenta años. La persistencia de veranos fríos tras las erupciones se explica por la posterior expansión del hielo marino y un debilitamiento de las corrientes del Atlántico relacionadas, según las simulaciones computacionales realizadas para el estudio, que también analizó patrones de vegetación muerta y datos tomados del hielo y sedimentos.
Los científicos han teorizado que la Pequeña Edad de Hielo fue causada por la disminución de la radiación solar de verano, por volcanes en erupción que enfriaron el planeta al emitir sulfatos y otras partículas en aerosol que reflejaban la luz solar hacia el espacio, o por una combinación de las dos cosas. «Esta es la primera vez que alguien ha identificado claramente el inicio específico de los tiempos de frío que marcaron la Pequeña Edad de Hielo», dice Gifford Miller, investigador de la Universidad de Colorado en Boulder y autor principal del estudio. «También hemos explicado cómo este período frío pudo mantenerse durante tanto tiempo. Si el sistema climático es golpeado una y otra vez por el frío durante un período relativamente corto -en este caso, por erupciones de origen volcánico- parece que hay un efecto de enfriamiento acumulativo»
«Nuestras simulaciones mostraron que las erupciones volcánicas pueden haber tenido un efecto de enfriamiento profundo», añade Bette Otto-Bliesner, científico del Centro Nacional para la Investigación Atmosférica (NCAR) y coautor del estudio. «Las erupciones podrían haber provocado una reacción en cadena, afectando al hielo y a las corrientes oceánicas de una manera que disminuyó las temperaturas durante siglos».
Los científicos estiman que los comienzos de la Pequeña Edad de Hielo se produjeron del siglo XIII al XVI, pero hay poco consenso al respecto. Aunque las temperaturas de enfriamiento pudieron afectar a lugares tan lejanos como América del Sur y China, se hizo particularmente evidente en el norte de Europa. El avance de los glaciares de los valles de montaña destruyó pueblos alpinos y las pinturas de la época muestran a la gente patinando sobre hielo en el río Támesis en Londres y en los canales de los Países Bajos, lugares que estaban libres de hielo antes y después.
«La forma dominante en la que los científicos han definido la Pequeña Edad de Hielo es por la expansión de los glaciares en los Alpes y en Noruega», apunta Miller. «Pero el tiempo en que los glaciares europeos avanzaron lo suficiente como para demoler pueblos enteros sucedió mucho tiempo después del inicio del período de frío».
Miller y sus colegas fecharon con radiocarbono cerca de 150 muestras de material vegetal muerto con las raíces intactas, recogidas en la isla de Baffin, en el Ártico canadiense. Encontraron un gran número de muestras de entre 1275 y 1300, lo que indica que las plantas habían sido congeladas y envueltas por el hielo por un acontecimiento relativamente repentino. El equipo halló un segundo repunte de muestras de plantas congeladas sobre el año 1450, lo que indica un segund0 enfriamiento.
Para ampliar el estudio, los investigadores analizaron muestras de sedimentos de lagos glaciares vinculados a la capa de hielo de 367 kilómetros cuadrados en el Langjökull, en la sierra central de Islandia, que llega a casi un kilómetro de altura. La capas anuales en los núcleos se volvieron repentinamente más gruesas a finales del siglo XIII y otra vez en el siglo XV debido al aumento de la erosión causada por la expansión de la capa de hielo que enfría el clima.
Los científicos emplearon un modelo que simula las condiciones del mar de 1150 a 1700 dC, lo que reveló la existencia de grandes erupciones que podrían haber enfriado el hemisferio norte lo suficiente como para desencadenar la expansión del hielo marino del Ártico.
Para los científicos, una de las cuestiones para reflexionar sobre la Pequeña Edad de Hielo es lo inusual que resulta el calentamiento actual de la Tierra. Una investigación previa realizada por Miller en 2008 en la isla Baffin indicaba que las temperaturas actuales son las más cálidas en los últimos 2.000 años.
Fuente: http://www.abc.es/20120131/ciencia/abci-enigma-pequena-edad-hielo-201201311208.html
TOKIO, 1 Feb. (EUROPA PRESS) -
La Agencia Meteorológica de Japón ha anunciado que revisará las pautas que determinan la emisión de alertas de tsunami en el país tras un terremoto, según ha informado la cadena de televisión pública japonesa NHK.
Tras el terremoto del 11 de marzo de 2011, que devastó el noreste del país, las alertas de emergencia emitidas por la agencia minusvaloraron la posible altura del tsunami, provocando que tanto la población como las autoridades no actuaran de manera adecuada ante el riesgo.
Las nuevas pautas piden a la Agencia Meteorológica que simplifique la predicción de alturas de los tsunamis de los ocho niveles existentes a únicamente cinco. Los nuevos niveles serán para un metro, tres metros, cinco metros, diez metros y por encima de diez metros.
En caso de que la magnitud del terremoto no sea conocida inmediatamente, las nuevas pautas establecen que se emita la máxima alerta sin una predicción numérica de la posible altura del tsunami. Dichas alertas describirán el posible tsunami como "gigante" o como "alto" y urgirán a la población a ponerse a cubierto o evacuar la zona.
La Agencia Meteorológica pretende implementar estas nuevas pautas desde finales de 2012.
30 de enero de 2012
A las 10:36 (tiempo local) del 31 de enero de 1906 se produjo un sismo de magnitud (Mw) 8.8 con epicentro en el océano Pacífico y frente a la frontera Ecuador-Colombia. Este es uno de los sismos más grandes registrados en el mundo y tiene la misma magnitud del terremoto de Chile del 27 de febrero de 2010.
De acuerdo a la documentación de la época el sismo produjo los mayores daños en la provincia de Esmeraldas, en poblaciones como Esmeraldas, Río Verde, Limones, La Tola y en la zona de Tumaco - Colombia. De acuerdo a las investigaciones llevadas acabo por Egred (sin publicar), el sismo no generó consecuencias catastróficas en las zonas mencionadas debido a que no existían en la época grandes centros urbanos; sin embargo los estragos se extendieron hasta las provincias norteñas de la Sierra del Ecuador. De acuerdo a la página de la NEIC-USGS (National Earthquake Information Center del Servicio Geológico de los Estados Unidos, http://earthquake.usgs.gov/) los daños por este sismo ocurrieron tan lejos como Cali - Colombia hasta Otavalo - Ecuador, siendo sentido hasta Maracaibo - Venezuela.
De acuerdo al artículo elaborado por Rudolph y Szirtes (publicado originalmente en 1911), en el cual realizan un compendio y evaluación de los efectos del terremoto del 31 de enero de 1906, se resalta que testigos de la época relatan que en la zona de Tumaco (Colombia) "Fue imposible mantenerse en pie sin apoyo". En un informe periodístico que incluye este trabajo se señala que "Todos fueron arrojados al suelo. Toda la isla estaba en movimiento y todas las casas se mecían de un lado a otro, como un barco en mar embravecida, de tal manera que uno tenía que temer que en cualquier momento podrían desplomarse y enterrarnos bajo sus escombros. El movimiento del terreno fue tan fuerte que hacía imposible moverse del sitio." De acuerdo a reportes adicionales del mismo artículo, el mismo sismo en Guayaquil hizo que las campanas de las iglesias estuvieran repicando por si solas por más de 80 segundos, y según las estimaciones de las personas ubicadas en o cerca a la zona de Tumaco y Esmeraldas, el terremoto tuvo una duración mayor a los 2 minutos.
El NEIC-USGS señala que la altura de las olas del tsunami producido por el sismo fue sobre los 5 metros en la zona de Tumaco y al parecer afectó las costas cercanas al epicentro a menos de treinta minutos de ocurrido el sismo. De acuerdo a los reportes de la época varias olas asociadas al tsunami afectaron la zona de Esmeraldas y horas después fueron percibidas en Bahía de Caráquez y Guayaquil. En la investigación realizada por Espinoza (1992) y publicada en el Acta Oceanográfica del Pacífico, se señala que "las olas del tsunami fueron muy destructivas en las costas bajas y planas existentes desde Río Verde hacia el norte, donde todas las viviendas asentadas cerca de la playa o en la zona estuarina formada por los Ríos Santiago y Mataje fueron destruidas; alrededor de unas 1000 a 1500 personas murieron. En La Tola, más de 23 viviendas fueron destruidas. En Esmeraldas el río se salió de su cauce inundando las zonas bajas de la población"
Investigaciones posteriores señalan que el área de ruptura involucrada en este sismo fue de aproximadamente 500 km, es decir la zona de ruptura fue desde el Puerto de Manta en Ecuador hasta Buenaventura en Colombia (compilado por Segovia, 2001). Además, se registraron en el sistema de monitoreo sísmico del Observatorio Astronómico de Quito 4 sismos premonitores en nuestras costas.
Este sismo es uno de los tantos que han ocurrido en la zona de subducción frente a Ecuador, y que resulta del choque de la placa Océanica de Nazca con la placa continental Sudamericana. El Ecuador forma parte del Anillo de Fuego del Pacífico, que es una de las zonas con mayor actividad sísmica en el planeta, y que en los últimos años ha experimentado por lo menos 3 sismos de magnitud grande (superior a magnitud 8), como son el terremoto de Sumatra de 2004 de magnitud 9.1 (Mw), el terremoto de Chile de 2010 de magnitud 8.8 (Mw) y el terremoto de Japón de 2011 de magnitud 9.0 (Mw), los cuales se caracterizaron no sólo por generar tsunamis que afectaron importantes zonas del mundo, sino que lastimosamente generaron un importante número de víctimas, pérdidas materiales y secuelas que serán superadas al mediano o largo plazo, como es el caso de Fukushima. En este momento de la historia donde las comunicaciones juegan un papel importante en el desarrollo de las sociedades, es vital que países como el Ecuador mantenga viva sus memoria histórica sísmica para aprender de los errores, pero sobretodo generar desde lo personal hacia lo familiar y social una cultura de prevención. Todo esto con el gran objetivo de saber cómo enfrentar un evento sísmico, pero sobretodo cómo aumentar lo probabilidad de sobrevivencia de la persona y su familia ante la ocurrencia de un sismo y tsunami.
LT
17:30 (Tiempo local)
Instituto Geofísico
Escuela Politécnica Nacional
© 2024 Instituto Geofísico - EPN
Inicio | Escuela Politécnica Nacional | Correo Institucional
Ladrón de Guevara E11-253, Aptdo. 2759 Quito - Ecuador.
Teléfonos: (593-2)2225655 ; (593-2)2225627 Fax: (593-2)2567847