Reseña del Área de Desarrollo del Instituto Geofísico
Noticias

Noticias

Subcategorías

Sismos

Sismos

Uno de sus objetivos fundamentales es el monitoreo sísmico permanente de la actividad de origen tectónico y volcánico del territorio nacional.

Ver artículos...
Volcanes

Volcanes

Los volcanes activos son observados a través de diversas tecnologías.

Ver artículos...
Instrumentos

Instrumentos

La tecnología comprende un conjunto de teorías y técnicas que permiten el aprovechamiento práctico del conocimiento científico. No es de sorprenderse que a diario aparezcan nuevas técnicas y revolucionarias teorías que permitan que la tecnología avance a pasos agigantados, facilitando procesos y resolviendo problemas dentro de diversas áreas del quehacer de la comunidad en general.


Desde su creación, el IG ha visto la necesidad de utilizar instrumentos que le permitan realizar una precisa vigilancia tanto en sísmica como en varios otros parámetros relacionados al vulcanismo.

Ver artículos...

14 de julio de 2013

 

Hoy a las 06:47 (tiempo local) la red de monitoreo del volcán Tungurahua registró una explosión de tamaño grande seguido por una constante señal de tremor de emisión de alta energía, que hasta el cierre del presente boletín se mantiene.

Debido a la presencia de nubosidad en la zona del volcán no se pudo determinar la altura de la columna, sin embargo se han recibido reportes de que fue observada desde sitios alejados como la ciudad de Quito. El cañonazo asociado con la explosión fue escuchado en varias ciudades como Riobamba, Ambato y Guayaquil, y en sitios cercanos fue percibido con movimiento de suelo.

Asociado con la mencionada actividad sísmica se recibieron desde las 07:00 (tiempo local) del descenso de flujos piroclásticos por la quebrada de Achupashal y Vazcún. Además se han reportado el descenso de flujos de lodo por la quebrada de Vazcún. De manera adicional, se ha informado la caída de ceniza y cascajo en poblaciones cercanas al volcán como Huambaló.

AA/MR/JS/CV/LT

Instituto Geofísico

Escuela Politécnica Nacional

07:55 (tiempo local)

 

11 de julio de 2013

El Instituto Geofísico de la Escuela Politécnica Nacional (IGEPN) en colaboración del Instituto de Investigación para el Desarrollo de Francia (IRD) y el Servicio Geológico de los Estados Unidos (USGS) publicaron los resultados obtenidos de las investigaciones realizadas sobre los flujos de lodo en caso de una erupción en el folleto “Las potenciales zonas de inundación por lahares en el volcán Cotopaxi”.

Esta publicación tiene como objetivo comunicar los resultados de las simulaciones del tránsito de lahares (flujos de lodo) por los principales drenajes que nacen en el volcán Cotopaxi. Las simulaciones fueron efectuadas con el software LAHARZ, desarrollado por el científico Steve Schilling de la USGS. Estas modelizaciones utilizaron como base un nuevo modelo digital de elevación (DEM) de alta resolución (4 metros).

Con el fin de pronosticar cuáles podrían ser las potenciales zonas de inundación se plantearon cuatro posibles escenarios eruptivos que fueron determinados en base al conocimiento geológico que se tiene del volcán y también se consideraron los potenciales volúmenes de los flujos de lodo, haciendo una estimación del tamaño actual de su glaciar.

El Cotopaxi forma parte del Arco Volcánico Ecuatoriano y es considerado uno de los volcanes más peligrosos del mundo debido a la frecuencia de sus erupciones, su estilo eruptivo, su relieve y su cobertura glaciar. Actualmente más de 300 000 personas viven cerca del volcán o cerca de los drenajes importantes (ríos y quebradas) que nacen en sus flancos.

La investigación fue por el proyecto “Sistema de Alerta Temprana y Gestión del Riesgo Natural” financiado por el Banco Interamericano de Desarrollo (BID) y la publicación del folleto gracias al financiamiento de la Dirección de Información y de la Cultura Científica para el Sur del IRD (DIC-IRD).

El folleto está disponible para descargarlo en la página web del IGEPN en la sección publicaciones para la comunidad (http://www.igepn.edu.ec/index.php/publicaciones-para-la-comunidad.html).

LT/AOR

Instituto Geofísico

Escuela Politécnica Nacional

18:00 (tiempo local)

2 de julio de 2013

Como parte del monitoreo del volcán Cuicocha el Instituto Geofísico de la Escuela Politécnica Nacional (IGEPN)  realiza en el lago del mismo nombre campañas de medición del flujo de CO2. Los objetivos son evaluar los cambios en la emisión de CO2 a través del agua del lago, intentar identificar patrones estacionales y establecer un nivel de base, todo esto orientado a detectar anomalías que podrían relacionarse con cambios en la actividad magmática del volcán.

Las campañas de medición de CO2 en el Lago Cuicocha se realizan gracias a la colaboración del Municipio de Cotacachi y de la Hostería Cuicocha quienes facilitan el bote con combustible y un conductor. Desde marzo de 2011 el IGEPN ha llevado a cabo 6 campañas, cada una de ellas realizadas durante un período de 3 días y con intervalos cercanos a los 3 meses.

Se utiliza un equipo portátil, compuesto por un detector LI-COR LI820, acoplado a una cámara de acumulación. El instrumento es controlado via bluetooth desde un computador, equipado con el software de adquisión (Flux Manager). El conjunto es un diseño de WestSystems.

Esquema de la distribución de puntos de medición de CO2 para la campaña de mayo 2013. Fuente: IGEPN

El proceso de medición se realiza colocando la cámara de acumulación, directamente sobre la superficie del lago y acompañada de una boya. Posteriormente el flujo pasa por la cámara de acumulación, ingresa al detector y finalmente se lo registra en el computador.

Las mediciones que se realizan cubren la superficie total del lago siguiendo una red de puntos, separados entre sí aproximadamente 150 m, con alrededor de 110 mediciones puntuales en cada campaña.

Los datos obtenidos en las 6 campañas de medición muestran una amplia variación del flujo de CO2 a través del agua en el lago. Los valores máximos de CO2 están asociados a la zona de burbujeo, ubicada al norte del domo Yerovi.

Fechas de la campaña

Duración de la campaña

Número de medidas

Zona de mayor flujo

Valor máximo del flujo de CO2 (g/m2/día)

Valor mínimo del flujo de CO2 (g/m2/día)

marzo 2011

2 días

89

Extremo noroccidental del domo

76

6

diciembre 2011

3 días

99

Zona del burbujeo

105

4

marzo 2012

3 días

109

Zona del burbujeo

170

0.5

junio 2012

3 días

121

Zona del burbujeo

303

10

septiembre 2012

3 días

110

Zona del burbujeo

132

2.2

mayo 2013

3 días

112

Zona del burbujeo

83

1.6

Para tener una interpretación de estos datos se debe continuar con las campañas regulares de manera que se pueda identificar la existencia o no de patrones estacionales. De cualquier manera las concentraciones medidas son bastante elevadas y se debería hacer perfiles verticales de la concentración de CO2 con el objetivo de conocer si existe una estratificación de CO2 en el lago y por supuesto evaluar sus posibles consecuencias.

SH/AR/DP

Instituto Geofísico

Escuela Politécnica Nacional

12:00 (Tiempo local)

29 de junio de 2013

La red de monitoreo sísmico instalada en el volcán Tungurahua ha registrado un incremento en el número de sismos, el cual pasa de 10 diarios el 20 de Junio a 54 sismos el 29 de Junio, con un promedio de 29 sismos en los últimos 5 días. Los sismos registrados son de tipo LP, los cuales se generan por la vibración de fluidos en el interior de grietas y conductos volcánicos, la misma que es causada por un incremento de presiones en el interior del volcán. Estos sismos son de pequeña magnitud por lo que no son sentidos por la población. Dada la distribución de amplitudes, se estima que los sismos tienen un origen superficial, es decir se localizan en la parte superior del conducto volcánico. Debido al tamaño pequeño de los sismos, todavía no se tienen una ubicación hipocentral precisa de los mismos.

En esta tarde se observó una leve actividad fumarólica en la zona del cráter. Los sensores de gases instalados en los alrededores del volcán no muestran incrementos en la concentración de SO2, por lo que se puede imaginar un conducto cerrado por un tapón en su zona superior. Esto favorecería una concentración de presiones en el interior del volcán.

En estas circunstancias es posible que las presiones que se están acumulando puedan generar explosiones que destruyan el tapón, tal como ha ocurrido en otras ocasiones, por ejemplo el 16 de diciembre del 2012, dando lugar a un nuevo episodio de actividad, posiblemente similar a los que ocurrieron en los meses de mayo y marzo de este año.

Si bien este escenario no es inequívoco, es importante que las autoridades y la población se mantengan informadas y sigan de cerca los potenciales cambios en la actividad actual del volcán, por lo que el Instituto Geofísico de la EScuela Politécnica Nacional (IGEPN) continuará informando sobre el desarrollo futuro de la actividad del volcán.

MR/SH/PR/lt

Instituto Geofìsico

Escuela Politécnica Nacional

19:40 (tiempo local)

Desde principios de 1877, el Cotopaxi había empezado nuevamente a presentar emisiones de ceniza y explosiones de tamaño pequeño a moderado. Para junio del mismo año, la actividad se había incrementado notablemente, tanto así que el día 26 se produjo una fase eruptiva de magnitud suficiente para formar flujos piroclásticos. Las descripciones de los hechos ocurridos en ese día, realizadas por Luis Sodiro (1877) y Teodoro Wolf (1878), hablan de “derrames de lavas” que se desbordaron desde el cráter del Cotopaxi. Sin embargo, el fenómeno que ambos autores describen no corresponde a una “colada de lava”, sino más bien a “flujos piroclásticos”. Este tipo de confusión de términos es común en las descripciones antiguas, pero toda duda se despeja cuando existen descripciones detalladas de los fenómenos ocurridos y de sus depósitos, lo que es el caso en las reseñas de Sodiro y Wolf. Textualmente Wolf  indicó que “la lava no se derramaba en una o algunas corrientes, sino igualmente en todo el perímetro del cráter, sobre el borde más bajo, así como sobre la cúspide más alta”. Wolf explica también que las lavas” fueron derramadas en un intervalo de tiempo de entre 15-30 minutos, y enfatiza que el fenómeno tuvo lugar de forma violenta, con una gran ebullición de las masas ígneas desde el cráter que rápidamente cubrieron todo el cono del Cotopaxi. Estas descripciones no dejan duda alguna de que los fenómenos ocurridos fueron flujos piroclásticos. 

Sin embargo, para ambos autores, los fenómenos más remarcables de los sucedidos el 26 de junio de 1877 fueron los lahares (flujos de lodo y escombros) que ocurrieron en los ríos Pita, Cutuchi y Tamboyacu, sobre todo por la gran destrucción que provocaron a todo lo largo de los tres drenajes. Ya en aquella época, ambos autores concluyeron que el origen de los lahares fue el súbito y extenso derretimiento que sufrió parte del glaciar del Cotopaxi al tomar contacto con los “derrames de lava” (flujos piroclásticos). 

Lo que vale resaltar es que, en la mayoría de los casos, los lahares fueron tan caudalosos que rebosaron fácilmente los cauces naturales de los ríos, provocando extensas inundaciones de lodo y destrucción en las zonas aledañas. Según Wolf, los lahares tuvieron velocidades tales que se tardaron algo más de media hora en llegar a Latacunga, poco menos de 1 hora en llegar el Valle de los Chillos, cerca de tres horas en llegar a la zona de Baños (Tungurahua) y cerca de 18 horas en llegar a la desembocadura del río Esmeraldas en el océano Pacífico. Asombrado, Sodiro escribió que los lahares fluían con gran ímpetu “sin que nada pudiese […] oponer algún dique a su curso destructor, ni siquiera presentarle la más mínima resistencia”. 

Finalmente, como en todas sus erupciones, el Cotopaxi también se produjo una importante lluvia de ceniza el 26 de junio de 1877. Este fenómeno ocurrió principalmente en las zonas que se encuentran al occidente y nor-occidente del volcán, debido a la dirección predominante de los vientos. Una de las poblaciones más afectadas por la lluvia de ceniza ese día fue Machachi, donde se depositó una capa de casi 2 cm de espesor. En Quito la acumulación llegó a los 6 mm, siendo menor en Latacunga y ausente al sur de Ambato (Sodiro, 1877). 

Más hacia el occidente, en las estribaciones de la Cordillera Occidental y en la Costa ecuatoriana, la caída de ceniza parece haber sido muy extensa y haber durado por varios días. Sodiro indica que conoció reportes de lluvias de ceniza ocurridas en las provincias de Manabí y Esmeraldas, mientras Wolf afirma que “en Guayaquil la lluvia de ceniza empezó el 26 de junio en el mañana y duró con breves interrupciones hasta el 1ero. de julio”. En todo caso, las acumulaciones de ceniza seguramente no superaron unos pocos milímetros de espesor sobre la zona costera del Ecuador. Sin embargo, vale recordar aquí que durante las erupciones del Guagua Pichincha en 1 999 y del Reventador en 2 002, las acumulaciones de ceniza en Quito no superaron los 3-4 mm de espesor, pero en ambos casos fueron suficientes para paralizar completamente la ciudad por varios días, provocando enormes pérdidas económicas. Lo mismo puede ser previsto para las zonas costeras del Ecuador en caso de ocurrir una gran erupción del Cotopaxi en el futuro. 

La erupción del 26 de junio de 1877 puede ser considerada como la “erupción típica” del Cotopaxi en cuanto tiene que ver con los fenómenos volcánicos ocurridos. Sin embargo, los estudios geológicos y volcanológicos del Cotopaxi indican claramente que este volcán es capaz de dar lugar a eventos de mucho mayor tamaño. Efectivamente, por ejemplo, en lugares como el Valle de los Chillos o Salcedo se puede apreciar que los lahares asociados a las erupciones de 1742 ó 1768 fueron de tamaño mayor a los de 1877. Asimismo, en los cortes de la carretera Panamericana, en el tramo entre El Boliche y Lasso, se puede observar que las caídas de ceniza y pómez de muchas erupciones pasadas tienen espesores muy superiores al de la caída de ceniza de 1877. El propio Sodiro ya se había dado cuenta de esto y escribió en su relato de 1877: “Qué diferencia entre ésta y las grandes erupciones antiguas, algunas de las cuales han producido uno, dos y aún más metros de espesor [de caída de piroclastos]! De la presente no ha de quedar ningún indicio en la estratificación terrestre”. Esta afirmación de Sodiro resultó certera solo en cuanto a la caída de ceniza, cuyo rastro es difícil de encontrar actualmente en lugares situados a más de 10 km del cráter; pero no lo es en cuanto a los depósitos de los lahares de 1877, los cuales pueden ser observados con cierta facilidad en diversos puntos a todo lo largo de los ríos Pita, Cutuchi y Tamboyacu. 

Luego de esta erupción, el Cotopaxi continuó con actividad moderada a leve por varios años. Los reportes escritos hablan principalmente de explosiones esporádicas y emisiones que provocaron algunas caídas leves de ceniza en diversos sectores del flanco occidental. Incluso, en un texto de mayo de 1914, se escribe que el Cotopaxi estaba “como de costumbre, con una columna de humo sobre el cráter”. El último reporte de actividad en el volcán corresponde a una posible explosión de pequeño tamaño ocurrida en febrero de 1942 (Egred, en prep.), si bien esta fecha no ha podido ser confirmada con toda certeza. 

Texto tomado: “Los peligros volcánicos asociados con el Cotopaxi”