Noticias

Noticias

Subcategorías

Sismos

Sismos

Uno de sus objetivos fundamentales es el monitoreo sísmico permanente de la actividad de origen tectónico y volcánico del territorio nacional.

Ver artículos...
Volcanes

Volcanes

Los volcanes activos son observados a través de diversas tecnologías.

Ver artículos...
Instrumentos

Instrumentos

La tecnología comprende un conjunto de teorías y técnicas que permiten el aprovechamiento práctico del conocimiento científico. No es de sorprenderse que a diario aparezcan nuevas técnicas y revolucionarias teorías que permitan que la tecnología avance a pasos agigantados, facilitando procesos y resolviendo problemas dentro de diversas áreas del quehacer de la comunidad en general.


Desde su creación, el IG ha visto la necesidad de utilizar instrumentos que le permitan realizar una precisa vigilancia tanto en sísmica como en varios otros parámetros relacionados al vulcanismo.

Ver artículos...
Jueves, 25 Junio 2020 12:24

Sobrevuelo al volcán Sangay

Gracias a la gestión realizada por el Servicio Nacional de Gestión de Riesgos y Emergencias (SNGRE), personal del Instituto Geofísico de la Escuela Politécnica Nacional (IGEPN) pudo tener el soporte logístico del Grupo de Aviación del Ejército No 45 Pichincha y a la tripulación del Ejército Ecuatoriano, para realizar un sobrevuelo al volcán Sangay el día 24 de junio del 2020 (Fig. 1).

SOBREVUELO AL VOLCÁN SANGAY

Figura 1. Personal del Grupo Aéreo del Ejército Ecuatoriano junto a la aeronave AS332 Super Puma, al mando de operaciones por el Mayor del Ejército Francisco Andrade. Con ellos el personal técnico del Instituto Geofísico: Dra. Silvia Vallejo, Ing. Marco Almeida, Ing. Iván Tapa, Ing. Jéssica Mejía, encargados de la vigilancia volcánica y mantenimiento de la estación remota SAGA en las cercanías del volcán.

El miércoles 11 de junio de 2025, personal del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) llevó a cabo un sobrevuelo de monitoreo térmico, visual y de fluidos, alrededor del volcán Cotopaxi (Fig. 1). El sobrevuelo fue efectuado gracias al apoyo logístico de la compañía Mission Aviation Fellowship (MAF).

El sobrevuelo se llevó a cabo manteniendo distancias variables entre 2 y 5 km entre la aeronave y el volcán. Así mismo, la altura de vuelo para la toma de imágenes térmicas fue de entre 5900 y 7000 m de altura. Las condiciones climáticas fueron difíciles, con una temperatura ambiente promedio de -10°C, y humedad relativa variable entre 30 - 35 %.

Sobrevuelo de monitoreo del volcán Cotopaxi
Figura 1. Ruta del sobrevuelo de monitoreo efectuado en el volcán Cotopaxi.


Monitoreo Visual
Durante el sobrevuelo el volcán se presentó despejado, principalmente en la zona alta sobre la cota de los 4200 m.

La actividad superficial observada se caracterizó por una emisión débil de gas generada desde el cráter del volcán. Esta emisión alcanzó una altura máxima de 100 m sobre el cráter y tenía una dirección preferencial hacia el occidente (Fig. 2). Durante el tiempo de vuelo, no se evidenciaron nubes de ceniza. La actividad superficial observada es catalogada como baja, congruente con los datos del monitoreo permanente obtenidos mediante las cámaras fijas (por ejemplo: Cámara Sincholagua).

Sobrevuelo de monitoreo del volcán Cotopaxi
Figura 2. En primer plano se observa el volcán Cotopaxi con una débil emisión de gas. La pared de roca que se puede observar bajo la cumbre, corresponde al campo fumarólico de Yanasacha. (Foto: P. Ramón, IG-EPN).


Monitoreo Térmico
Las imágenes térmicas fueron obtenidas mediante el uso de una cámara portátil de rango infrarrojo (FLIR T1020). Estas imágenes corresponden a las anomalías termales asociadas a los campos fumarólicos ubicados alrededor del cráter. Todas las temperaturas máximas aparentes (TMA) obtenidas son consideradas como bajas, y no muestran cambios relevantes respecto a vuelos pasados.

Es importante tomar en cuenta que estas temperaturas presentan subestimaciones asociadas a las limitaciones propias del método. Estas limitaciones son provocadas por: condiciones meteorológicas, distancia entre el volcán y la aeronave, geometría del cuerpo observado, presencia de gases volcánicos, entre otros.

En tal virtud, los gases emitidos durante el sobrevuelo no permitieron observar el fondo del cráter del volcán.

Los valores de TMA obtenidos corresponden a: Campo fumarólico de Yanasacha, 16.9 °C, y Flanco oriental, 18.2 °C.

Adicionalmente, se identificaron pequeñas zonas rocosas dentro del glaciar que, bajo la incidencia de los rayos del sol se mostraban calientes. Sin embargo, estas zonas son ajenas a la actividad propia del volcán.

Sobrevuelo de monitoreo del volcán Cotopaxi
Figura 3. Imágenes infrarrojas. El color amarillo representa las zonas calientes detectadas en el volcán (ver escala de colores). Izquierda: vista del flanco nororiental del volcán Cotopaxi. En esta imagen se puede divisar el campo fumarólico de Yanasacha y parte de los campos fumarólicos orientales. Derecha: vista del flanco suroriental del volcán. Note las zonas calientes encerradas en los círculos blancos (Imagen: F. Naranjo, IG-EPN).


Medición de Gases Volcánicos
Las mediciones de gas se realizaron usando un equipo MultiGAS. Este equipo es capaz de medir concentraciones de 4 diferentes tipos de especies gaseosas (Agua: H2O, Dióxido de carbono: CO2, Dióxido de azufre: SO2 y Ácido sulfhídrico: H2S). Durante el sobrevuelo, se realizaron varios intentos de medición de la pluma de gas, sin embargo, dado que estas emisiones fueron débiles, no se registraron picos de ninguna de las especies gaseosas mencionadas anteriormente.

Esto es consistente con la tendencia actual de altura de las emisiones de gas, y los valores bajos de flujo detectados por la red DOAS permanente.


Conclusiones

La actividad del volcán es catalogada como: Superficial e Interna, Baja con tendencia sin cambio.


F. Naranjo, M. Almeida, S. Vallejo
Instituto Geofísico
Escuela Politécnica Nacional

El 09 de diciembre de 2022, personal del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) efectuó un sobrevuelo alrededor del volcán Cotopaxi con el objetivo de medir las temperaturas en la zona del cráter y además medir los gases emitidos por el volcán. Este sobrevuelo se realizó gracias al apoyo de las Fuerzas Armadas, la Presidencia, el Ministerio de Defensa, la Secretaría de Comunicación de la Presidencia y la Gobernación de Cotopaxi a través de la gestión del Servicio Nacional de Gestión de Riesgos y Emergencias (Foto 1).

Sobrevuelo de monitoreo efectuado el 09 de diciembre de 2022 al volcán Cotopaxi
Foto 1.- Personal del IGEPN y Fuerzas Armadas, Grupo Tucanes, que participó en el sobrevuelo al Volcán Cotopaxi (09 de diciembre de 2022, FFAA).


En el marco de este sobrevuelo se realizó la toma de imágenes térmicas usando una cámara infrarroja portátil, además de medidas de CO2, SO2 y H2S usando un equipo multiGAS y observaciones mediante cámaras visuales convencionales.

Durante el sobrevuelo el volcán permaneció cubierto por una nube lenticular sobre el cráter (Foto 2). Esto impidió realizar tomas directas del mismo. Sin embargo, se pudo apreciar la constante emisión de una columna de gas con bajo contenido de ceniza, que alcanzaba 500 metros sobre la cumbre (Foto 2). De igual manera, se pudo apreciar una capa de ceniza que cubría el flanco suroccidental del edificio volcánico.

Sobrevuelo de monitoreo efectuado el 09 de diciembre de 2022 al volcán Cotopaxi
Foto 2.- Izquierda: Nube lenticular cubriendo el cráter del Cotopaxi, vista desde el sureste (S. Hidalgo/IG-EPN). Derecha: Emisión de gases volcánicos emitida desde el cráter del volcán vista desde el suroccidente (R. Valdez). Nótese la nube lenticular y la ceniza depositada sobre el flanco suroccidental.


Las imágenes infrarrojas adquiridas durante el vuelo permitieron identificar con claridad el contraste de temperatura entre esta nube meteorológica (que está fría, y se la representa en color azul) y la emisión de los gases volcánicos provenientes del cráter del volcán (que está caliente, y se la representa en colores rojos, amarillos y verdes, Foto 3). La temperatura de estos gases disminuye progresivamente a medida que son trasladados por los vientos y se van alejando del cráter. La emisión de gases desde el cráter estuvo dirigida hacia el occidente. Finalmente, detrás de los gases volcánicos, se identifica la zona de fumarolas de la pared de Yanasacha (óvalo entrecortado, Foto 3).

Sobrevuelo de monitoreo efectuado el 09 de diciembre de 2022 al volcán Cotopaxi
Foto 3.- Imagen térmica mostrando el contraste de temperaturas entre la emisión de gases volcánicos y las nubes meteóricas (09 de diciembre de 2022, M.F. Naranjo/IG-EPN. Imagen visual - R. Valdez).


Adicionalmente, el equipo multiGAS permitió medir con precisión las concentraciones de SO2 y H2S en la pluma de gas volcánico. Las razones SO2/H2S están alrededor de 20, observándose un incremento desde el inicio de la actividad volcánica que se dio a finales de octubre de este año. Estos valores indican un origen magmático para el gas emitido por el volcán Cotopaxi.


S. Hidalgo, M. Naranjo, E. Telenchana, M. Almeida, A. Vásconez
Corrector de Estilo: G. Pino
Instituto Geofísico
Escuela Politécnica Nacional

Gracias a la coordinación interinstitucional entre la Presidencia de la República del Ecuador, Ministerio de Defensa, Servicio Nacional de Gestión de Riesgos y Emergencias, Gobernación de Cotopaxi y la Fuerza Aérea Ecuatoriana, el personal técnico del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) pudo efectuar un sobrevuelo de monitoreo al volcán Cotopaxi el 28 de noviembre de 2022.

Sobrevuelo de monitoreo efectuado el 28 de noviembre de 2022 al volcán Cotopaxi
Figura 1. (Der.) Ruta del sobrevuelo efectuado al volcán Cotopaxi el día 28 de noviembre de 2022 (Base topográfica: Google Earth). (Izq.) Tripulación del sobrevuelo y personal del IG-EPN, el 28 de noviembre de 2022 (Foto: FAE).


La misión consistió en dar varias vueltas al cráter del volcán para realizar mediciones mediante imágenes térmicas, imágenes con cámara de espectro visual y mediciones de razones de especies gaseosas. Durante el vuelo, que duró poco más de una hora, se siguió la ruta mostrada en la figura 1, con una altura máxima 7400 m sobre el nivel del mar.
Mientras se realizó el sobrevuelo, la parte superior del volcán Cotopaxi se mostraba despejada con una columna de emisión principalmente de gas con bajo contenido de ceniza, que alcanzaba 500 metros sobre la cumbre (figura. 2). De igual manera, se pudo apreciar una amplia cobertura de nieve en el edificio volcánico.

Sobrevuelo de monitoreo efectuado el 28 de noviembre de 2022 al volcán Cotopaxi
Figura 2. Columna de emisión de gas (coloración azulada), dispersándose en dirección noroeste, con una altura media de 500 m sobre el nivel del cráter. Vista desde el flanco noroeste del volcán. Nótese la pared de “Yanasacha”, localizada justo bajo la cumbre norte (Foto: J. Barros/ IG EPN).


Las imágenes térmicas obtenidas no muestran variación en la temperatura de los campos fumarólicos, ni en las paredes internas del conducto en el cráter del volcán. Sin embargo, no se obtuvieron imágenes claras del fondo del cráter dada la alta cantidad de gases que se encuentran en emisión, lo cual limita las capacidades de la cámara térmica. Las temperaturas máximas aparentes obtenidas no superan los 40 °C (figura. 3).

Sobrevuelo de monitoreo efectuado el 28 de noviembre de 2022 al volcán Cotopaxi
Figura 3. Fotografía del cráter del volcán e imagen térmica correspondiente tomada desde el suroccidente. La imagen térmica muestra temperaturas que no superan los 40 °C (zonas en color amarillo) (Imágenes: M. Almeida, S. Vallejo/ IGEPN).


El equipo MultiGAS es capaz de medir las concentraciones de 4 diferentes tipos de especies gaseosas, todas ellas magmáticas (Agua: H2O, Dióxido de carbono: CO2, Dióxido de azufre: SO2 y Ácido sulfhídrico: H2S). Se realizaron 3 cortes a la pluma de gas, un ejemplo de uno de ellos se puede ver en la figura 4. En cada una de estas transectas fue posible medir la totalidad de las especies gaseosas, con líneas de vuelo entre los 6900 y 6500 msnm. Las razones gaseosas siguen mostrando un origen magmático en la proveniencia de los gases y su interpretación será tratada más a detalle en la emisión del próximo informe especial.

Sobrevuelo de monitoreo efectuado el 28 de noviembre de 2022 al volcán Cotopaxi
Figura 4. (Der.) Vista del flanco suroriental del volcán desde los 6500 msnm. En el recuadro se puede observar el pico generado por los gases presentes en la pluma durante la transecta. (Izq.) Personal del IG-EPN dentro del avión Twin Otter, realizando actividades de medición de gases y termografía (Fotos: M. Almeida, D. Sierra /IG EPN).


Al momento de la emisión de este informe, la actividad del volcán sigue siendo catalogada como: Superficial Moderada con tendencia ascendente e Interna Moderada con tendencia ascendente. Se recomienda recibir la información únicamente de fuentes oficiales. El Instituto Geofísico de la Escuela Politécnica Nacional informará oportunamente en caso de registraste algún cambio en la actividad.


M. Almeida, D. Sierra, M. Ruiz
Corrector de Estilo: G. Pino
Instituto Geofísico
Escuela Politécnica Nacional

El martes 02 y jueves 04 de diciembre de 2025, personal del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN) llevó a cabo sobrevuelos de monitoreo térmico, visual y de fluidos alrededor del volcán Sangay y el volcán Tungurahua (Fig. 1), con el apoyo logístico de la compañía Mission Aviation Fellowship (MAF).

Sobrevuelo de monitoreo visual, térmico y de fluidos a los volcanes Sangay y Tungurahua
Figura 1. Ruta del recorrido para realizar las tareas de monitoreo visual e infrarrojo. A) Volcán Sangay, 02 de diciembre de 2025. B) Volcán Tungurahua, 04 de diciembre de 2025 (Imagen base: Google Earth).


El sobrevuelo se efectuó manteniendo distancias de seguridad variables entre 3 y 5 km entre la aeronave y los edificios volcánicos (Fig. 1, 2). La altura de vuelo para la adquisición de datos fluctuó entre 3400 y 6000 m s.n.m. en el volcán Sangay, y 5000 m s.n.m. en el volcán Tungurahua. Las condiciones meteorológicas fueron favorables, con una temperatura ambiente promedio de 2.5 °C y una humedad relativa del 19.1 %, lo que permitió obtener observaciones claras y estables (Fig. 3).

Sobrevuelo de monitoreo visual, térmico y de fluidos a los volcanes Sangay y Tungurahua
Figura 2. Técnico del IG-EPN realizando el monitoreo visual del volcán Sangay. (Foto: S. Vallejo).


Monitoreo visual y térmico
Durante el sobrevuelo, los volcanes permanecieron completamente despejados, facilitando una observación integral de su actividad superficial.

• Volcán Sangay
Durante el sobrevuelo, para este volcán se identificó tres estructuras principales a nivel de la cumbre: el cráter central (Fig. 3A), el cráter noroccidental (Fig. 3B) y un vento noroccidental. Se observó pequeñas explosiones emitidas desde el cráter noroccidental, cuyas columnas alcanzaron alturas máximas de ~500 m sobre el nivel del cráter, las cuales se dirigieron hacia el norte (Fig. 3B). Para este cráter se estimó una temperatura máxima aparente (TMA) de 250°C (Fig. 3C). Por su parte, se observó la presencia de un pequeño flujo de lava (<300 m de extensión) con cuatro lóbulos proveniente del vento noroccidental (ubicado muy cercano a la cumbre), con una TMA de 541 °C (Fig. 3C). Respecto al cráter central, no se evidenció ningún tipo de actividad superficial lo cual se vio reflejado por su TMA, con valores menores de 50°C. Adicionalmente durante el sobrevuelo se realizaron mediciones continuas de especies gaseosas con el equipo MultiGAS portable, sin embargo, no se detectó ningún gas volcánico porque no fue posible atravesar la pluma debido a la presencia de ceniza.

Sobrevuelo de monitoreo visual, térmico y de fluidos a los volcanes Sangay y Tungurahua
Figura 3. A) Imagen visual del cráter central sin aparente actividad superficial. B) Imagen visual que muestra una explosión emitida desde el cráter noroccidental. C) Imagen compuesta entre visual y térmica mostrando el flujo de lava y sus lóbulos siendo emitidos desde el vento noroccidental y dispersados hacia el flanco norte. (Fotografías e imágenes térmicas: P. Ramón/S. Vallejo).


• Volcán Tungurahua
Congruente con su actividad actual, no se observó emisiones en el volcán. Únicamente se registró una leve presencia de fumarolas al interior del cráter, Fig. 4.

Sobrevuelo de monitoreo visual, térmico y de fluidos a los volcanes Sangay y Tungurahua
Figura 4. A) Vista nororiental del volcán Tungurahua. D) Vista del cráter, desde el 2016 el volcán no presenta actividad superficial. (Fotos: P. Ramón, I. Marín).


En base a lo observado se puede concluir que la actividad superficial en el volcán Sangay se restringe a las partes altas del volcán y se caracteriza por explosiones periódicas y la emisión de flujo de lava hacia el flanco norte. Respecto al volcán Tungurahua este presenta una actividad superficial baja únicamente relacionada con la presencia de fumarolas al interior del cráter.

El Instituto Geofísico informará si existen cambios en la actividad de estos volcanes

 

I. Marín, S. Vallejo
Instituto Geofísico
Escuela Politécnica Nacional