Noticias

Noticias

Subcategorías

Sismos

Sismos

Uno de sus objetivos fundamentales es el monitoreo sísmico permanente de la actividad de origen tectónico y volcánico del territorio nacional.

Ver artículos...
Volcanes

Volcanes

Los volcanes activos son observados a través de diversas tecnologías.

Ver artículos...
Instrumentos

Instrumentos

La tecnología comprende un conjunto de teorías y técnicas que permiten el aprovechamiento práctico del conocimiento científico. No es de sorprenderse que a diario aparezcan nuevas técnicas y revolucionarias teorías que permitan que la tecnología avance a pasos agigantados, facilitando procesos y resolviendo problemas dentro de diversas áreas del quehacer de la comunidad en general.


Desde su creación, el IG ha visto la necesidad de utilizar instrumentos que le permitan realizar una precisa vigilancia tanto en sísmica como en varios otros parámetros relacionados al vulcanismo.

Ver artículos...

Pondoa (Ecuador), 5 dic (EFE).- La sorpresiva erupción del volcán Tungurahua, en el centro andino de Ecuador, además de haber causado temor en la población, también ha desnudado varios problemas que afrontan los campesinos que habitan en sus dominios.

 

El domingo 5, decenas de campesinos que fueron evacuados el sábado, tras una erupción "importante" que obligó en algún momento a que las autoridades declararan la máxima alerta, volvieron a Bilbao, un poblado al pie del coloso.

 

Jorge Aguilar, de la junta parroquial de Bilbao, aseguró a Efe que la erupción del sábado "realmente fue fuerte" e hizo recordar otra más energética de agosto de 2006, cuando el volcán arrojó flujos de piroclastos o material magmático, que prácticamente cubrió a toda la montaña.

 

En esa ocasión fallecieron unas seis personas, sobre todo en la zona sur del volcán, recordó Aguilar tras señalar que Bilbao se cubrió de una gruesa capa de ceniza que dañó todos los cultivos.

 

Sin embargo, manifestó que los habitantes de su pueblo conocen al Tungurahua, ya que han convivido con él desde 1999 cuando comenzó su actual proceso eruptivo.

 

"A veces sube la actividad, muy fuerte, hace temblar la tierra y las ventanas, pero hay meses en que se tranquiliza (...) Ahí permite que la gente cultive" sus parcelas y obtenga buenos ingresos, añadió.

 

Sin embargo, el campesino se quejó de que Bilbao, como muchos otros pueblos de sus alrededores, alcancen notoriedad cuando el Tungurahua genera sus rabietas.

 

Y es que recordó que, pese a vivir cerca del peligro, los campesinos que viven en sus cercanías necesitan de las fértiles tierras del Tungurahua.

 

Por eso los campesinos de Bilbao y otras localidades vecinas como Puela y Chacauco, realizan mingas (trabajo voluntario, en quichua) para construir servicios que fueron dañados en la erupción de 2006.

 

"Lo que más se necesita son obras de infraestructura, la carretera ha sido reconstruida por nosotros y hemos hecho también un sistema de riego", agregó.

 

Aguilar admitió que siempre será un peligro vivir junto al Tungurahua, pero dijo que él, como muchos de sus vecinos, están dispuestos a correr el riesgo.

 

"Claro, si explota fuerte, entonces saldremos a las zonas de seguridad, pero hasta ahora hemos soportado" la actividad del coloso, añadió.

 

Además, indicó que algunos geólogos que los han visitado les dijeron que la actividad del Tungurahua, cada vez genera pulsos altos, pero de menor energía que el anterior.

 

El Instituto Geofísico (IG) de la Escuela Politécnica Nacional, que vigila al volcán todo el tiempo, considera que esa posibilidad puede darse "o no", aceptó Aguilar, que siempre está pendiente de las informaciones que esta institución les proporciona.

 

"Ellos (los del IG) nos advierten, nos anticipan de lo que puede pasar" y cuando "nos dicen que salgamos, entonces salimos" de la zona de peligro, dijo .

 

Esa alerta fue la que hizo el IG el sábado para que la gente de Bilbao evacúe el pueblo.

 

Y es que la erupción del sábado generó el rodar de bloques candentes que bajaron por las quebradas de la montaña, hasta un kilómetro bajo el cráter.

 

Tras el pulso de fuerte actividad, el volcán se tranquilizó y bajó su intensidad, aunque todavía mantiene su fuerza de forma "moderada", según el IG.

 

Ese cambio permitió a las autoridades cambiar la "alerta roja" declarada al momento de la erupción, a otra de tipo "amarilla" o de precaución.

 

El tipo de alerta podría volver a intensificarse, si la situación empeora, reveló a Efe uno de los militares que hoy acudieron a la zona del Tungurahua para atender la emergencia.

 

"Nosotros estaremos aquí el tiempo que se requiera", añadió el teniente Cristian Ayala, de las Fuerzas Especiales del Ejército, que comandó una patrulla para visitar las zonas de peligro.

 

Los militares repartieron heno a los campesinos para que alimenten su ganado, ya que la ceniza del Tungurahua ha afectado los pastizales.

 

"Es una situación dura para la gente de aquí, pro eso nosotros venimos a colaborar", añadió otro de los militares.

Durante la Asamblea IAVCEI SA2023 celebrada el 02 de febrero de 2023 en Nueva Zelanda, la Msc. Patricia Mothes, actual Jefa del Área de Vulcanología del Instituto Geofísico de la Escuela Politécnica Nacional (IG-EPN), recibió la nominación a ser considerada Miembro Honorario Vitalicio de la IAVCEI (Figura 1). La IAVCEI es la asociación de vulcanólogos más grande y prestigiosa del mundo.

La IAVCEI nomina a Patricia Mothes como Miembro Honorario Vitalicio
Figura 1.- Miembros Vitalicios Honorarios IAVCEI, SA023 Nueva Zelanda.


La IAVCEI por sus siglas en inglés significa Asociación Internacional de Vulcanología y Química del Interior de la Tierra. La Asociación representa el principal foco internacional para la investigación de volcanes, la mitigación de los desastres volcánicos y la investigación en disciplinas estrechamente relacionadas con la vulcanología.

La nominación de esta distinción se realizó en la Asamblea SA2023 del IAVCEI, con la aprobación y aplausos de cerca de 900 asistentes. Junto a Patricia Mothes, la IAVCEI reconoció con esta distinción este año al Dr. Ray Cas, profesor emérito de la Universidad Monash de Tasmania, al Dr. Lionel Wilson, profesor emérito de la Universidad de Lancaster del Reino Unido y a la Dra. Marta Lucía Calvache, ex-directora del Servicio Geológico Colombiano. Esta distinción fue anunciada y comunicada por el Dr. Patrick Allard, Presidente del IAVCEI y Director de Investigación Emérito del Centro Nacional de Investigación Científica de Francia CNRS (Figura 2).

La IAVCEI nomina a Patricia Mothes como Miembro Honorario Vitalicio
Figura 2.- Nominación de la Msc. Patricia Mothes como Miembro Honorario Vitalicio de la IAVCEI, durante la Asamblea IAVCEI SA2023 en Nueva Zelanda.


Patricia Ann Mothes nació en West Virginia, Estados Unidos, en 1957 y se formó como Geógrafa, para obtener posteriormente su maestría en la Universidad de Austin-Texas, tras lo cual dedicaría su vida a la Vulcanología. Vino a Ecuador en 1986 y se enamoró de su cultura, de sus paisajes, sus tradiciones y sobre todo de sus volcanes, mudándose a vivir permanentemente en Ecuador para trabajar en la Escuela Politécnica Nacional como investigadora y docente.

Patricia es un claro ejemplo de dedicación y amor a la ciencia. Durante su carrera ha escrito más de 150 artículos científicos, más de 10 capítulos de libros y ha presentado más de 80 posters y ponencias en eventos nacionales e internacionales. Adicionalmente, ha encabezado múltiples proyectos de vinculación e investigación a lo largo de su trayectoria.

En 2017, tomando como inspiración su imagen y su característica indumentaria, se hizo el lanzamiento oficial del personaje institucional del IG-EPN: “Patty la Vulcanóloga”. La inclusión de un personaje caricaturesco en el material de difusión permite la transmisión del conocimiento de un modo más amigable y digerible para el público. “Patty la Vulcanóloga” es hoy la protagonista de trípticos, folletos, infografías y diferentes materiales digitales e impresos, pensados especialmente para que los más jóvenes puedan entender los fenómenos sísmicos y volcánicos de forma simple.

La IAVCEI nomina a Patricia Mothes como Miembro Honorario Vitalicio
Figura 3.- Patty la Vulcanóloga, personaje institucional del IG-EPN.


D. Sierra, S. Hidalgo, M. Ruiz
Corrector de Estilo: G. Pino
Instituto Geofísico
Escuela Politécnica Nacional

Las pruebas en la Politécnica Nacional. Los técnicos realizan investigaciones sobre las viviendas y materiales sismorresistentes. Foto: Archivo El Comercio
Víctor Vizuete - El Comercio

     En efecto, para Jorge Valverde, profesor titular de Ingeniería Civil de la Escuela Politécnica Nacional, un evento de esa naturaleza está previsto. “Esperamos un sismo de 8,4 grados Richter, uno de los grandes. Esto viene del análisis del riesgo sísmico que se hizo hace unos 15 años. El estudio de probabilidades determinó que habrá un suceso de esta magnitud en el país, talvez frente a las costas de Esmeraldas y Manabí. O en otra parte, incluida Quito”.

      Mientras más tiempo pasa entre un sismo y otro, la cantidad de energía acumulada aumenta y su liberación se traduce en un terremoto de gran magnitud. Parecería preferible tener sismos pequeños pero seguidos en tiempo, que uno solo en un lapso mayor.

      Además, en el caso de Japón, sobre los tsunamis, quedó demostrado que no existe preparación alguna o prevención eficaz.

      La energía del agua, al ser superficial, es mucho mayor que la de las ondas sísmicas ya que su atenuación es mínima. Toda la energía se descarga en tierra.

      Pese a que en este momento no hay posibilidades de afrontar un tsunami, ¿está preparado el país para soportar un terremoto severo, de la escala de los de Chile y Japón? Todos los expertos consultados sostienen que no. Entre ellos el director del Instituto Geofísico, Hugo Yepes, los ingenieros Otto Maldonado, Fabricio Yépez y el arquitecto Aldo Echeverría, catedráticos de la Universidad San Francisco, al igual que el constructor Rafael Ruales y el máster en restauración Eduardo Báez.

      Maldonado es categórico: si con un fuerte aguacero se caen casas, no se diga con un sismo.

      ¿A qué se debe esta vulnerabilidad? Existen varios factores, como la construcción en sitios de riesgo como taludes y quebradas, pero los expertos coinciden en que la mayor causa de riesgo está atada a la informalidad.
 
      La construcción informal en el país es casi del 70%. ¿Qué pasa cuando a un canasto repleto de huevos se le colocan más encima?, pregunta Echeverría. “Los de arriba se caen y dañan el resto. Así es la construcción informal”.

      En Ecuador se carece de registros municipales de planos y licencias de construcción rígidos. Estos no pasaron por la revisión de un profesional y las edificaciones fueron construidas por maestros de obra con mucha o ninguna experiencia.

      Yepes recalca que en estos procedimientos se observan requerimientos mínimos, que tienen graves consecuencias en el colapso inminente de las estructuras, lo que convierte a un terremoto en una tragedia de gran magnitud. “Estas catástrofes no solo cobran vidas humanas valiosas sino que retrasan el desarrollo durante años del país afectado”, apunta.

      Las edificaciones informales además carecen de un adecuado diseño de hormigón, generalmente con exceso de agua en la mezcla, recalcan Maldonado y Ruales. Algo similar se puede decir de la cantidad de acero usado en las estructuras, de su doblado, figurado, amarrado, de manera antitécnica. “Y qué decir de la elaboración de mampuestos (morteros para mamposterías), de deficiente fabricación, de la calidad de las mezclas”, agrega Ruales.

      Las consecuencias frente a un sismo fuerte o aun terremoto son lógicas: esas construcciones se irán al suelo. Colapsarán, sin remedio. Las soluciones para este problema son muy complejas. Pero todas pasan por el control. Por tratar de disminuir el índice de informalidad y hacer cumplir las ordenanzas. Es decir -explica Echeverría- hacer prevención.

      En esta línea, la educación es básica. La prevención debe empezar en las escuelas, dice Maldonado. Debe incluirse la materia de prevención de desastres.

      Aunque la construcción formal ha mejorado mucho y el Código de la Construcción se está actualizando con el apoyo del Gobierno, aún falta control efectivo, lo que se aprovecha para incumplir con las especificaciones y levantar un edificio de riesgo.

      “Muchos profesionales planteamos que por Ordenanza los edificios de más de ocho pisos tengan su propio control. Instalar un acelerógrafo y un sismógrafo cuesta menos que instalar una cocina con baldosa italiana”, destaca Valverde. Este monitoreo debe ir ligado a alguien que recopile esa información y haga un seguimiento. Si los constructores no cumplen no se les da el permiso.

      Ruales, constructor de vivienda popular, apunta al mercado inmobiliario. “El mercado, el negocio inmobiliario irresponsable e, incluso, la intervención cada día mayor de capitales sin procedencia regular; la desatención a los más necesitados que deben alejarse del centro, buscando dormitorio en sitios y lugares inconvenientes aumentan la vulnerabilidad”.


La sismorresistencia es la alternativa

      Sucedió en el propio Japón, en la década de los cincuenta. El día de la inauguración del llamado primer edificio ‘totalmente antisísmico del mundo’, el Hotel Emperador, sucedió un movimiento de gran intensidad. El edificio resistió, pero, tiempo después, tuvo que ser derrocado porque tenía graves fallas estructurales.
Eso fortaleció la idea de la sismorresistencia como el remedio más lógico para enfrentar a los terremotos y otros fenómenos naturales.

      Pero ¿qué es un edificio sismorresistente? El ingeniero Otto Maldonado lo define como una estructura dúctil que debe cumplir tres condiciones de diseño: existencia, permanencia y factibilidad. En palabras más asequibles, un edificio sismorresistente debe garantizar su equilibrio ante una acción posible: un sismo, un huracán... Esto no significa que el edificio no colapse. De hecho puede caerse, pero antes debe garantizar su estabilidad hasta que sea evacuado totalmente y con el menor peligro posible para sus ocupantes.

      Las edificaciones deberán ser diseñadas para minimizar los problemas para las personas que las habitan, para limitar los daños. Un aumento en la cantidad del material (secciones de vigas y columnas más anchas, losas de mayor espesor) y un mejoramiento de la calidad y la resistencia de los materiales de construcción logran, por lo general, los objetivos propuestos.

      Los materiales son claves. El adobe y el tapial son muy rígidos; es decir, son menos capaces de aguantar la onda sísmica y se rompen con el pandeo (movimiento oscilatorio). La piedra, que es excelente para la compresión, al estirarse es 10 veces más débil, explica Echeverría. En consecuencia, también tiene sus riesgos. El acero y el hormigón armado son mucho más dúctiles y elásticos. Esas cualidades aumentan su resistencia a la acción de sismos y otros fenómenos.

¿Qué estructuras son las más importantes?

      Paradoja de paradojas: la Defensa Civil, una de las instituciones vitales en la planificación, prevención y mitigación de los efectos de una catástrofe de cualquier origen y que debería estar en una de las estructuras diseñadas para soportar los sismos más severos, funciona en un edificio que no cumple esos requerimientos.

      Ese es un gran error, dice Aldo Echeverría, porque los edificios que deben resistir de mejor manera la acción de los terremotos severos son los que funcionan como entidades de ayuda, bomberos, hospitales, escuelas...

      En teoría, esas edificaciones no deberían caerse ni con terremotos como los últimos de Japón y Chile.
Lamentablemente, eso no sucede en el país. Aunque sí hay ejemplos plausibles, como el Hospital Carlos Andrade Marín. Este hospital, que fue diseñado como un monobloque por el arquitecto Distel y fue inaugurado el 30 de mayo de 1970, se muestra como una construcción sólida y sismorresistente, explica Otto Maldonado. “Eso no se puede decir, en cambio, de muchos hospitales y centros de salud de otras ciudades y cantones de la patria, cuyas lastimeras imágenes miramos casi a diario en la televisión”.

      Por esa razón, porque deben ser las estructuras más resistentes, agrega Echeverría, las escuelas deben tener un reforzamiento estructural del 25% más que los edificios comunes; y los hospitales y puentes del 50% más. Así, por ejemplo, si una casa normal utiliza hormigones de 210 kg/cm², una escuela utilizará concretos con resistencias de 240 ó 260 kg/cm² y un hospital o un puente de 320 a 360 kg/cm².

      Este ejemplo se debe repetir en todos los insumos y elementos estructurales de esas edificaciones. Los puentes también deben ser estructuras superresistentes, pues son vitales para las comunicaciones y las evacuaciones posteriores.

Lunes, 05 Septiembre 2011 09:58

La Patagonia no se recupera del Puyehue

04 de septiembre de 2011

Las pequeñas comunidades de la línea sur de Río Negro y norte de Chubut pelean día a día con un adversario que llegó hace tres meses, pero que nadie sabe cuánto tiempo se quedará, a partir de la actividad que persiste en el volcán chileno Puyehue.

La lluvia de cenizas que inauguró este período gris para la región comenzó a caer en la tarde del 4 de junio pasado y si bien el espeso manto gris de los primeros días se modificó, su presencia es permanente en las calles y campos de los pequeños pueblos patagónicos, donde miles de animales han muerto.

Cuando la ceniza apareció la región central de la Patagonia sufría, desde aproximadamente 5 años atrás, una prolongada sequía que afectaba principalmente a la producción de lanares ovinos y caprinos, base de sustento de la población asentada en los campos de la región.

El fenómeno climático se agravó de modo superlativo desde hace tres meses cuando el volcán Puyehue inició una erupción que si bien se ha moderado, aún persiste. De acuerdo a los datos aportados por los servicios de geología de Chile, ese procesó generó más de cien millones de toneladas de cenizas, arena y piedra pómez en la atmósfera, que afectó a varias provincias del país.

Por la intensidad y principalmente la dirección de los vientos predominantes en la Patagonia, gran parte de ese material quedó depositado en territorio argentino, afectando alrededor de 7,5 millones de hectáreas en Neuquén, Río Negro y Chubut.

Si bien las ciudades más afectadas por el fenómeno fueron Villa La Angostura, Bariloche y San Martín de los Andes, por su cercanía al volcán, existe una gran cantidad de pequeñas localidades ubicadas en la meseta, sobre la línea sur de Río Negro y el centro norte de Chubut que sufren de modo constante los embates de la ceniza. La zona es desde hace décadas el refugio de miles de productores que a través de las ovejas y las chivas han encontrado su modo de sustento en este rincón del país, pero que hace algunos años vieron afectados sus intereses por dos flagelos. Por un lado, la sequía y por el otro la expansión de algunos depredadores naturales como el puma, que ha ganado terreno sobre campos vacíos o subocupados en ambas provincias.

Sin embargo, el 4 de junio la ceniza aportó el golpe de gracia para cientos de familias de minifundistas que ven cómo sus animales se mueren.

Fuente: http://www.eltribuno.info/salta/69218-La-Patagonia-no-se--recupera-del-Puyehue.note.aspx

Investigadores que trabajan en el diseño de infraestructuras costeras que resistan mejor a eventos naturales, como los tsunamis o los huracanes, han subrayado hoy la importancia de trabajar a tiempo en sistemas de alerta temprana y predicción de impactos porque no es posible construir estructuras "infalibles".
La tecnología actual no lo permite, pero tampoco sería asumible desde el punto de vista económico y, además, siempre hay que tener en cuenta que las infraestructuras "pueden fallar" y se deben diseñar elementos de protección "en la retaguardia" que minimicen los impactos si se produce ese fallo.
Estas son algunas de las ideas sobre las que se trabaja estos días en Santander en la Conferencia Internacional de Ingeniería Costera, el mayor evento mundial de estas características, en el que se están revisando los últimos estudios y avances en este campo.
El presidente de la Sociedad Americana de Ingenieros Civiles, Tony Dalrymple; el experto en huracanes Pat Linner, profesor de la Universidad de Johns Hopkins; y Jane Smith, del Cuerpo de Ingenieros del Ejército de Estados Unidos, han compartido hoy con los periodistas algunas de sus reflexiones, acompañados del director del Instituto de Hidráulica de Cantabria , el profesor Íñigo Losada.
El tsunami de Japón, de marzo de 2011, o el huracán Katrina, que arrasó la ciudad de Nueva Orlenas en agosto de 2005, son dos de los casos en los que se sustentan buena parte de los estudios y trabajos que desarrollan los expertos para mejorar los sistemas de protección frente a estos fenómenos naturales.
Pero las barreras físicas no bastan para hacerlos frente porque, según han recalcado tanto Losada como Smith, "no es posible construir infraestructuras infalibles", de ahí que muchos de los trabajos se centren ahora en diseñar sistemas de alerta temprana y de predicción de los posibles impactos.